TY - JOUR
T1 - Grewia Gum 2
T2 - Mucoadhesive Properties of Compacts and Gels
AU - Nep, Elijah I.
AU - Conway, Barbara R.
PY - 2011/8/1
Y1 - 2011/8/1
N2 - Purpose: To compare the mucoadhesive performance of grewia polysaccharide gum with those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose and carbopol 971P. Methods: Grewia polysaccharide gum compacts or gels as well as those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose or carbopol 971P were prepared. Texturometric and tensile analysis of the polymer gels and compacts were carried out using a software-controlled penetrometre, TA.XTPlus texture analyzer. The polymer gels were evaluated for hardness, stickiness, work of cohesion and work of adhesion. Furthermore, the detachment force of the polymer compacts from a mucin substrate was evaluated. Results: The work of adhesion of guar gels was significantly greater than that of grewia gels (p < 0.001) but the latter showed a significantly greater work of adhesion than carboxymethylcellulose gels (p < 0.05) and hydroxypropyl methylcellulose gels (p < 0.001). However, the work of cohesion for grewia/mucin gel mixture was significantly greater (p < 0.001) than those of carboxymethylcellulose/mucin, hydroxypropyl methylcellulose/mucin and carbopol 971P/mucin gel blends. The difference between the mucoadhesive performance of grewia compacts and those of hydroxypropyl methylcellulose and carbopol 971P compacts was insignificant (p > 0.05). Conclusion: Grewia polysaccharide gum demonstrated good mucoadhesive properties, comparable to those of carbopol 971P, carboxymethylcellulose, guar gum and hydroxypropyl methylcellulose, and therefore, should be suitable for the formulation of retentive drug delivery devices.
AB - Purpose: To compare the mucoadhesive performance of grewia polysaccharide gum with those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose and carbopol 971P. Methods: Grewia polysaccharide gum compacts or gels as well as those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose or carbopol 971P were prepared. Texturometric and tensile analysis of the polymer gels and compacts were carried out using a software-controlled penetrometre, TA.XTPlus texture analyzer. The polymer gels were evaluated for hardness, stickiness, work of cohesion and work of adhesion. Furthermore, the detachment force of the polymer compacts from a mucin substrate was evaluated. Results: The work of adhesion of guar gels was significantly greater than that of grewia gels (p < 0.001) but the latter showed a significantly greater work of adhesion than carboxymethylcellulose gels (p < 0.05) and hydroxypropyl methylcellulose gels (p < 0.001). However, the work of cohesion for grewia/mucin gel mixture was significantly greater (p < 0.001) than those of carboxymethylcellulose/mucin, hydroxypropyl methylcellulose/mucin and carbopol 971P/mucin gel blends. The difference between the mucoadhesive performance of grewia compacts and those of hydroxypropyl methylcellulose and carbopol 971P compacts was insignificant (p > 0.05). Conclusion: Grewia polysaccharide gum demonstrated good mucoadhesive properties, comparable to those of carbopol 971P, carboxymethylcellulose, guar gum and hydroxypropyl methylcellulose, and therefore, should be suitable for the formulation of retentive drug delivery devices.
KW - Grewia polysaccharide gum
KW - Mucoadhesive performance
KW - Texture analyzer
KW - Work of cohesion/adhesion
UR - http://www.scopus.com/inward/record.url?scp=80052557697&partnerID=8YFLogxK
U2 - 10.4314/tjpr.v10i4.4
DO - 10.4314/tjpr.v10i4.4
M3 - Article
AN - SCOPUS:80052557697
VL - 10
SP - 393
EP - 401
JO - Tropical Journal of Pharmaceutical Research
JF - Tropical Journal of Pharmaceutical Research
SN - 1596-5996
IS - 4
ER -