Grewia gum 2: Mucoadhesive properties of compacts and gels

Elijah I. Nep, Barbara R. Conway

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Purpose: To compare the mucoadhesive performance of grewia polysaccharide gum with those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose and carbopol 971P. Methods: Grewia polysaccharide gum compacts or gels as well as those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose or carbopol 971P were prepared. Texturometric and tensile analysis of the polymer gels and compacts were carried out using a software-controlled penetrometre, TA.XTPlus texture analyzer. The polymer gels were evaluated for hardness, stickiness, work of cohesion and work of adhesion. Furthermore, the detachment force of the polymer compacts from a mucin substrate was evaluated. Results: The work of adhesion of guar gels was significantly greater than that of grewia gels (p < 0.001) but the latter showed a significantly greater work of adhesion than carboxymethylcellulose gels (p < 0.05) and hydroxypropyl methylcellulose gels (p < 0.001). However, the work of cohesion for grewia/mucin gel mixture was significantly greater (p < 0.001) than those of carboxymethylcellulose/mucin, hydroxypropyl methylcellulose/mucin and carbopol 971P/mucin gel blends. The difference between the mucoadhesive performance of grewia compacts and those of hydroxypropyl methylcellulose and carbopol 971P compacts was insignificant (p > 0.05). Conclusion: Grewia polysaccharide gum demonstrated good mucoadhesive properties, comparable to those of carbopol 971P, carboxymethylcellulose, guar gum and hydroxypropyl methylcellulose, and therefore, should be suitable for the formulation of retentive drug delivery devices.

LanguageEnglish
Pages393-401
Number of pages9
JournalTropical Journal of Pharmaceutical Research
Volume10
Issue number4
Publication statusPublished - Aug 2011

Fingerprint

Grewia
guar gum
Gels
Carboxymethylcellulose Sodium
Gingiva
Polysaccharides
Polymers
Cyamopsis
Drug Compounding
Hardness
Mucins
Software
Equipment and Supplies
Hypromellose Derivatives
carbopol 971P

Cite this

@article{89bd80f4a1674a3dbe1366b71b19c224,
title = "Grewia gum 2: Mucoadhesive properties of compacts and gels",
abstract = "Purpose: To compare the mucoadhesive performance of grewia polysaccharide gum with those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose and carbopol 971P. Methods: Grewia polysaccharide gum compacts or gels as well as those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose or carbopol 971P were prepared. Texturometric and tensile analysis of the polymer gels and compacts were carried out using a software-controlled penetrometre, TA.XTPlus texture analyzer. The polymer gels were evaluated for hardness, stickiness, work of cohesion and work of adhesion. Furthermore, the detachment force of the polymer compacts from a mucin substrate was evaluated. Results: The work of adhesion of guar gels was significantly greater than that of grewia gels (p < 0.001) but the latter showed a significantly greater work of adhesion than carboxymethylcellulose gels (p < 0.05) and hydroxypropyl methylcellulose gels (p < 0.001). However, the work of cohesion for grewia/mucin gel mixture was significantly greater (p < 0.001) than those of carboxymethylcellulose/mucin, hydroxypropyl methylcellulose/mucin and carbopol 971P/mucin gel blends. The difference between the mucoadhesive performance of grewia compacts and those of hydroxypropyl methylcellulose and carbopol 971P compacts was insignificant (p > 0.05). Conclusion: Grewia polysaccharide gum demonstrated good mucoadhesive properties, comparable to those of carbopol 971P, carboxymethylcellulose, guar gum and hydroxypropyl methylcellulose, and therefore, should be suitable for the formulation of retentive drug delivery devices.",
keywords = "Grewia polysaccharide gum, Mucoadhesive performance, Texture analyzer, Work of cohesion/adhesion",
author = "Nep, {Elijah I.} and Conway, {Barbara R.}",
year = "2011",
month = "8",
language = "English",
volume = "10",
pages = "393--401",
journal = "Tropical Journal of Pharmaceutical Research",
issn = "1596-5996",
publisher = "Pharmacotherapy Group",
number = "4",

}

Grewia gum 2 : Mucoadhesive properties of compacts and gels. / Nep, Elijah I.; Conway, Barbara R.

In: Tropical Journal of Pharmaceutical Research, Vol. 10, No. 4, 08.2011, p. 393-401.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Grewia gum 2

T2 - Tropical Journal of Pharmaceutical Research

AU - Nep, Elijah I.

AU - Conway, Barbara R.

PY - 2011/8

Y1 - 2011/8

N2 - Purpose: To compare the mucoadhesive performance of grewia polysaccharide gum with those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose and carbopol 971P. Methods: Grewia polysaccharide gum compacts or gels as well as those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose or carbopol 971P were prepared. Texturometric and tensile analysis of the polymer gels and compacts were carried out using a software-controlled penetrometre, TA.XTPlus texture analyzer. The polymer gels were evaluated for hardness, stickiness, work of cohesion and work of adhesion. Furthermore, the detachment force of the polymer compacts from a mucin substrate was evaluated. Results: The work of adhesion of guar gels was significantly greater than that of grewia gels (p < 0.001) but the latter showed a significantly greater work of adhesion than carboxymethylcellulose gels (p < 0.05) and hydroxypropyl methylcellulose gels (p < 0.001). However, the work of cohesion for grewia/mucin gel mixture was significantly greater (p < 0.001) than those of carboxymethylcellulose/mucin, hydroxypropyl methylcellulose/mucin and carbopol 971P/mucin gel blends. The difference between the mucoadhesive performance of grewia compacts and those of hydroxypropyl methylcellulose and carbopol 971P compacts was insignificant (p > 0.05). Conclusion: Grewia polysaccharide gum demonstrated good mucoadhesive properties, comparable to those of carbopol 971P, carboxymethylcellulose, guar gum and hydroxypropyl methylcellulose, and therefore, should be suitable for the formulation of retentive drug delivery devices.

AB - Purpose: To compare the mucoadhesive performance of grewia polysaccharide gum with those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose and carbopol 971P. Methods: Grewia polysaccharide gum compacts or gels as well as those of guar gum, carboxymethylcellulose, hydroxypropyl methylcellulose or carbopol 971P were prepared. Texturometric and tensile analysis of the polymer gels and compacts were carried out using a software-controlled penetrometre, TA.XTPlus texture analyzer. The polymer gels were evaluated for hardness, stickiness, work of cohesion and work of adhesion. Furthermore, the detachment force of the polymer compacts from a mucin substrate was evaluated. Results: The work of adhesion of guar gels was significantly greater than that of grewia gels (p < 0.001) but the latter showed a significantly greater work of adhesion than carboxymethylcellulose gels (p < 0.05) and hydroxypropyl methylcellulose gels (p < 0.001). However, the work of cohesion for grewia/mucin gel mixture was significantly greater (p < 0.001) than those of carboxymethylcellulose/mucin, hydroxypropyl methylcellulose/mucin and carbopol 971P/mucin gel blends. The difference between the mucoadhesive performance of grewia compacts and those of hydroxypropyl methylcellulose and carbopol 971P compacts was insignificant (p > 0.05). Conclusion: Grewia polysaccharide gum demonstrated good mucoadhesive properties, comparable to those of carbopol 971P, carboxymethylcellulose, guar gum and hydroxypropyl methylcellulose, and therefore, should be suitable for the formulation of retentive drug delivery devices.

KW - Grewia polysaccharide gum

KW - Mucoadhesive performance

KW - Texture analyzer

KW - Work of cohesion/adhesion

UR - http://www.scopus.com/inward/record.url?scp=80052557697&partnerID=8YFLogxK

M3 - Article

VL - 10

SP - 393

EP - 401

JO - Tropical Journal of Pharmaceutical Research

JF - Tropical Journal of Pharmaceutical Research

SN - 1596-5996

IS - 4

ER -