High intensity neutrino oscillation facilities in Europe

T. R. Edgecock, O. Caretta, T. Davenne, C. Densam, M. Fitton, D. Kelliher, P. Loveridge, S. Machida, C. Prior, C. Rogers, M. Rooney, J. Thomason, D. Wilcox, E. Wildner, I. Efthymiopoulos, R. Garoby, S. Gilardoni, C. Hansen, E. Benedetto, E. JensenA. Kosmicki, M. Martini, J. Osborne, G. Prior, T. Stora, T. Melo Mendonca, V. Vlachoudis, C. Waaijer, P. Cupial, A. Chancé, A. Longhin, J. Payet, M. Zito, E. Baussan, C. Bobeth, E. Bouquerel, M. Dracos, G. Gaudiot, B. Lepers, F. Osswald, P. Poussot, N. Vassilopoulos, J. Wurtz, V. Zeter, J. Bielski, M. Kozien, L. Lacny, B. Skoczen, B. Szybinski, A. Ustrzycka, A. Wroblewski, M. Marie-Jeanne, P. Balint, C. Fourel, J. Giraud, J. Jacob, T. Lamy, L. Latrasse, P. Sortais, T. Thuillier, S. Mitrofanov, M. Loiselet, Th. Keutgen, Th. Delbar, F. Debray, C. Trophine, S. Veys, C. Daversin, V. Zorin, I. Izotov, V. Skalyga, G. Burt, A. C. Dexter, V. L. Kravchuk, T. Marchi, M. Cinausero, F. Gramegna, G. De Angelis, G. Prete, G. Collazuol, M. Laveder, M. Mazzocco, M. Mezzetto, C. Signorini, E. Vardaci, A. Di Nitto, A. Brondi, G. La Rana, P. Migliozzi, R. Moro, V. Palladino, N. Gelli, D. Berkovits, M. Hass, T. Y. Hirsh, M. Schaumann, A. Stahl, J. Wehner, A. Bross, J. Kopp, D. Neuffer, R. Wands, R. Bayes, A. Laing, P. Soler, S. K. Agarwalla, A. Cervera Villanueva, A. Donini, T. Ghosh, J. J. Gómez Cadenas, P. Hernández, J. Martín-Albo, O. Mena, J. Burguet-Castell, L. Agostino, M. Buizza-Avanzini, M. Marafini, T. Patzak, A. Tonazzo, D. Duchesneau, L. Mosca, M. Bogomilov, Y. Karadzhov, R. Matev, R. Tsenov, E. Akhmedov, M. Blennow, M. Lindner, T. Schwetz, E. Fernández Martinez, M. Maltoni, J. Menéndez, C. Giunti, M. C. González García, J. Salvado, P. Coloma, P. Huber, T. Li, J. López Pavón, C. Orme, S. Pascoli, D. Meloni, J. Tang, W. Winter, T. Ohlsson, H. Zhang, L. Scotto-Lavina, F. Terranova, M. Bonesini, L. Tortora, A. Alekou, M. Aslaninejad, C. Bontoiu, A. Kurup, L. J. Jenner, K. Long, J. Pasternak, J. Pozimski, J. J. Back, P. Harrison, K. Beard, A. Bogacz, J. S. Berg, D. Stratakis, H. Witte, P. Snopok, N. Bliss, M. Cordwell, A. Moss, S. Pattalwar, M. Apollonio

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ- beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

Original languageEnglish
Article number021002
Number of pages18
JournalPhysical Review Special Topics - Accelerators and Beams
Volume16
Issue number2
DOIs
Publication statusPublished - 20 Feb 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'High intensity neutrino oscillation facilities in Europe'. Together they form a unique fingerprint.

Cite this