Impact of processing methods on the dissolution of artemether from two non-ordered mesoporous silicas

Hira Tahir, Yasser Shahzad, Laura Waters, Talib Hussain, Abid Yousaf, Tariq Mahmood, Rizwan Sheikh

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Poor aqueous solubility is often linked with a poor dissolution rate and ultimately, limited bioavailability of pharmaceutical compounds. This study describes the application of mesoporous materials (Syloid 244 and Syloid AL1) in improving the dissolution rate of a drug with poor aqueous solubility, namely artemether, utilising different processing methods including physical mixing, co-grinding and solid dispersions prepared by solvent evaporation and the lyophilisation technique. The prepared formulations were extensively characterised for their solid-state properties and the drug release attributes were studied. Differential scanning calorimetry and X-ray diffraction confirmed conversion of crystalline artemether into a disordered and amorphous form, whilst no intermolecular interactions were detected between artemether and silica. Both silica grades enhanced the dissolution rate of artemether in comparison with drug alone, for example from 17.43% (± 0.87%) to 71.55% (± 3.57%) after 120 mins with lyophilisation and Syloid 244 at a 1:3 ratio. This enhancement was also dependant on the choice of processing method, for example, co-ground and lyophilised formulations prepared with Syloid 244 at 1:3 ratio produced the most extensive dissolution, thus endorsing the importance of materials as well as choice of formulation method.
Original languageEnglish
Pages (from-to)139-145
Number of pages7
JournalEuropean Journal of Pharmaceutical Sciences
Volume112
Early online date21 Nov 2017
DOIs
Publication statusPublished - 15 Jan 2018

Fingerprint

Dive into the research topics of 'Impact of processing methods on the dissolution of artemether from two non-ordered mesoporous silicas'. Together they form a unique fingerprint.

Cite this