Abstract
The present study aimed to develop and validate an advanced image stitching algorithm integrated with chemical imaging at the nanometre scale. This was applied to track the swelling, erosion, drug release and changes in surface texture of a swelling-controlled release system. The technique involves the delivery and withdrawal of a liquid droplet from the surface of the tablet alongside capturing multiple images of tablet surface using white light profilometry. The recovered liquid was then subject to chemical analysis for the quantification of drug and HPMC. The multiple images acquired during drug release were stitched together using an algorithm developed to generate a full tablet surface. New methods for swelling analysis (regional point, area and multiple regional analysis techniques) were also successfully developed. The results exhibited the exceptional capability of this technique for providing quantitative information regarding swelling, erosion, drug release and surface topography, hence negating the need for separate investigations. Moreover, it can also be anticipated that this technique may have potential use in other fields where surface dissolution, erosion and swelling have significant impact.
Original language | English |
---|---|
Pages (from-to) | 16119-16129 |
Number of pages | 11 |
Journal | RSC Advances |
Volume | 9 |
Issue number | 28 |
Early online date | 30 May 2019 |
DOIs | |
Publication status | Published - 1 Jun 2019 |
Fingerprint
Dive into the research topics of 'In-situ 3D nanoscale advanced imaging algorithms with integrated chemical imaging for the characterisation of pharmaceuticals'. Together they form a unique fingerprint.Profiles
-
Muhammad Usman Ghori
- Department of Pharmacy - Senior Research Fellow
- School of Applied Sciences - Senior Research Fellow and Course Leader
- Pharmaceutics and Drug Delivery Centre - Member
- Biorefinery Engineering and Bioprocessing Research Centre - Member
- Technical Textiles Research Centre - Associate Member
- Pharmaceutical Policy and Practice Research Centre - Associate Member
- Biopolymer Research Centre - Associate Member
Person: Academic