Influence of drug exposure parameters on the activity of paclitaxel in multicellular spheroids

K M Nicholson, M C Bibby, R M Phillips

Research output: Contribution to journalArticle

63 Citations (Scopus)

Abstract

Paclitaxel is a chemotherapeutic drug which has clinical activity against several solid tumours including ovarian and metastatic breast cancers. Despite extensive preclinical evaluation in several experimental models, no studies have determined the effect of taxol on multicellular spheroids, a model which closely mimics the microregions of solid tumours. MCF-7 human breast carcinoma spheroids were significantly less sensitive than monolayers with IC50 values of 14.33 +/- 4.51 microM and 0.15 +/- 0.09 microM, respectively, following a 1 h drug exposure. Similarly, DLD-1 human colon carcinoma spheroids were also more resistant (IC50 = 33.0 +/- 8.89 microM) than monolayers (IC50 = 0.36 +/- 0.14 microM) following a 1 h drug exposure. Paclitaxel was unable to penetrate DLD-1 multicell layers (22 microns in thickness), suggesting that suboptimal drug exposures to paclitaxel occur in cells which reside some distance away from the surface of the spheroid. In the case of DLD-1 spheroids, extending the exposure time to 24 h whilst maintaining the same overall concentration x time (C x T) drug exposure parameters, resulted in greater cell kill (C x T required to kill 50% of cells = 13.67 +/- 3.21 microM/h) compared with 1 h drug exposures (C x T required to kill 50% of cells = 33.00 +/- 8.89 microM/h). Similar results were obtained with MCF-7 spheroids. In monolayers cultures, dose-response curves contained a marked plateau phase (a characteristic feature of cell cycle phase specific drug) and in the case of MCF-7 cells, cell kill was proportional to T as opposed to C x T. These results support the use of prolonged infusions of paclitaxel in the clinic, as extending the duration of drug exposure not only allows more cells to enter sensitive phases of the cell cycle, but would also allow paclitaxel more time to penetrate into avascular regions of solid tumours. It is likely that paclitaxel will only be effective against cells which reside close to tumour blood vessels and combination therapy with bioreductive drugs (such as tirapazamine) may produce synergistic effects in vivo.

LanguageEnglish
Pages1291-1298
Number of pages8
JournalEuropean Journal of Cancer
Volume33
Issue number8
DOIs
Publication statusPublished - Jul 1997
Externally publishedYes

Fingerprint

Cellular Spheroids
Paclitaxel
Pharmaceutical Preparations
Inhibitory Concentration 50
tirapazamine
Cell Cycle
Vascular Tissue Neoplasms
Breast Neoplasms
Neoplasms
MCF-7 Cells
Colon
Theoretical Models
Carcinoma

Cite this

@article{fd162fad192343a79c8bd6e4625799b1,
title = "Influence of drug exposure parameters on the activity of paclitaxel in multicellular spheroids",
abstract = "Paclitaxel is a chemotherapeutic drug which has clinical activity against several solid tumours including ovarian and metastatic breast cancers. Despite extensive preclinical evaluation in several experimental models, no studies have determined the effect of taxol on multicellular spheroids, a model which closely mimics the microregions of solid tumours. MCF-7 human breast carcinoma spheroids were significantly less sensitive than monolayers with IC50 values of 14.33 +/- 4.51 microM and 0.15 +/- 0.09 microM, respectively, following a 1 h drug exposure. Similarly, DLD-1 human colon carcinoma spheroids were also more resistant (IC50 = 33.0 +/- 8.89 microM) than monolayers (IC50 = 0.36 +/- 0.14 microM) following a 1 h drug exposure. Paclitaxel was unable to penetrate DLD-1 multicell layers (22 microns in thickness), suggesting that suboptimal drug exposures to paclitaxel occur in cells which reside some distance away from the surface of the spheroid. In the case of DLD-1 spheroids, extending the exposure time to 24 h whilst maintaining the same overall concentration x time (C x T) drug exposure parameters, resulted in greater cell kill (C x T required to kill 50{\%} of cells = 13.67 +/- 3.21 microM/h) compared with 1 h drug exposures (C x T required to kill 50{\%} of cells = 33.00 +/- 8.89 microM/h). Similar results were obtained with MCF-7 spheroids. In monolayers cultures, dose-response curves contained a marked plateau phase (a characteristic feature of cell cycle phase specific drug) and in the case of MCF-7 cells, cell kill was proportional to T as opposed to C x T. These results support the use of prolonged infusions of paclitaxel in the clinic, as extending the duration of drug exposure not only allows more cells to enter sensitive phases of the cell cycle, but would also allow paclitaxel more time to penetrate into avascular regions of solid tumours. It is likely that paclitaxel will only be effective against cells which reside close to tumour blood vessels and combination therapy with bioreductive drugs (such as tirapazamine) may produce synergistic effects in vivo.",
keywords = "Antineoplastic Agents, Phytogenic/pharmacokinetics, Breast Neoplasms/drug therapy, Cell Survival/drug effects, Colonic Neoplasms/drug therapy, Dose-Response Relationship, Drug, Drug Administration Schedule, Female, Humans, Paclitaxel/pharmacokinetics, Spheroids, Cellular/drug effects, Tumor Cells, Cultured/drug effects",
author = "Nicholson, {K M} and Bibby, {M C} and Phillips, {R M}",
year = "1997",
month = "7",
doi = "10.1016/S0959-8049(97)00114-7",
language = "English",
volume = "33",
pages = "1291--1298",
journal = "European Journal of Cancer",
issn = "0959-8049",
publisher = "Elsevier Limited",
number = "8",

}

Influence of drug exposure parameters on the activity of paclitaxel in multicellular spheroids. / Nicholson, K M; Bibby, M C; Phillips, R M.

In: European Journal of Cancer, Vol. 33, No. 8, 07.1997, p. 1291-1298.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Influence of drug exposure parameters on the activity of paclitaxel in multicellular spheroids

AU - Nicholson, K M

AU - Bibby, M C

AU - Phillips, R M

PY - 1997/7

Y1 - 1997/7

N2 - Paclitaxel is a chemotherapeutic drug which has clinical activity against several solid tumours including ovarian and metastatic breast cancers. Despite extensive preclinical evaluation in several experimental models, no studies have determined the effect of taxol on multicellular spheroids, a model which closely mimics the microregions of solid tumours. MCF-7 human breast carcinoma spheroids were significantly less sensitive than monolayers with IC50 values of 14.33 +/- 4.51 microM and 0.15 +/- 0.09 microM, respectively, following a 1 h drug exposure. Similarly, DLD-1 human colon carcinoma spheroids were also more resistant (IC50 = 33.0 +/- 8.89 microM) than monolayers (IC50 = 0.36 +/- 0.14 microM) following a 1 h drug exposure. Paclitaxel was unable to penetrate DLD-1 multicell layers (22 microns in thickness), suggesting that suboptimal drug exposures to paclitaxel occur in cells which reside some distance away from the surface of the spheroid. In the case of DLD-1 spheroids, extending the exposure time to 24 h whilst maintaining the same overall concentration x time (C x T) drug exposure parameters, resulted in greater cell kill (C x T required to kill 50% of cells = 13.67 +/- 3.21 microM/h) compared with 1 h drug exposures (C x T required to kill 50% of cells = 33.00 +/- 8.89 microM/h). Similar results were obtained with MCF-7 spheroids. In monolayers cultures, dose-response curves contained a marked plateau phase (a characteristic feature of cell cycle phase specific drug) and in the case of MCF-7 cells, cell kill was proportional to T as opposed to C x T. These results support the use of prolonged infusions of paclitaxel in the clinic, as extending the duration of drug exposure not only allows more cells to enter sensitive phases of the cell cycle, but would also allow paclitaxel more time to penetrate into avascular regions of solid tumours. It is likely that paclitaxel will only be effective against cells which reside close to tumour blood vessels and combination therapy with bioreductive drugs (such as tirapazamine) may produce synergistic effects in vivo.

AB - Paclitaxel is a chemotherapeutic drug which has clinical activity against several solid tumours including ovarian and metastatic breast cancers. Despite extensive preclinical evaluation in several experimental models, no studies have determined the effect of taxol on multicellular spheroids, a model which closely mimics the microregions of solid tumours. MCF-7 human breast carcinoma spheroids were significantly less sensitive than monolayers with IC50 values of 14.33 +/- 4.51 microM and 0.15 +/- 0.09 microM, respectively, following a 1 h drug exposure. Similarly, DLD-1 human colon carcinoma spheroids were also more resistant (IC50 = 33.0 +/- 8.89 microM) than monolayers (IC50 = 0.36 +/- 0.14 microM) following a 1 h drug exposure. Paclitaxel was unable to penetrate DLD-1 multicell layers (22 microns in thickness), suggesting that suboptimal drug exposures to paclitaxel occur in cells which reside some distance away from the surface of the spheroid. In the case of DLD-1 spheroids, extending the exposure time to 24 h whilst maintaining the same overall concentration x time (C x T) drug exposure parameters, resulted in greater cell kill (C x T required to kill 50% of cells = 13.67 +/- 3.21 microM/h) compared with 1 h drug exposures (C x T required to kill 50% of cells = 33.00 +/- 8.89 microM/h). Similar results were obtained with MCF-7 spheroids. In monolayers cultures, dose-response curves contained a marked plateau phase (a characteristic feature of cell cycle phase specific drug) and in the case of MCF-7 cells, cell kill was proportional to T as opposed to C x T. These results support the use of prolonged infusions of paclitaxel in the clinic, as extending the duration of drug exposure not only allows more cells to enter sensitive phases of the cell cycle, but would also allow paclitaxel more time to penetrate into avascular regions of solid tumours. It is likely that paclitaxel will only be effective against cells which reside close to tumour blood vessels and combination therapy with bioreductive drugs (such as tirapazamine) may produce synergistic effects in vivo.

KW - Antineoplastic Agents, Phytogenic/pharmacokinetics

KW - Breast Neoplasms/drug therapy

KW - Cell Survival/drug effects

KW - Colonic Neoplasms/drug therapy

KW - Dose-Response Relationship, Drug

KW - Drug Administration Schedule

KW - Female

KW - Humans

KW - Paclitaxel/pharmacokinetics

KW - Spheroids, Cellular/drug effects

KW - Tumor Cells, Cultured/drug effects

U2 - 10.1016/S0959-8049(97)00114-7

DO - 10.1016/S0959-8049(97)00114-7

M3 - Article

VL - 33

SP - 1291

EP - 1298

JO - European Journal of Cancer

T2 - European Journal of Cancer

JF - European Journal of Cancer

SN - 0959-8049

IS - 8

ER -