TY - JOUR
T1 - Influence of Transesterification Catalysts Synthesized with Citric Acid on the Quality and Oxidative Stability of Biodiesel from Black Soldier Fly Larvae
AU - Kathumbi, Lilies K.
AU - Home, Patrick G.
AU - Raude, James M.
AU - Gathitu, Benson B.
AU - Gachanja, Anthony N.
AU - Wamalwa, Anthony
AU - Mibei, Geoffrey
PY - 2022/9/1
Y1 - 2022/9/1
N2 - In biodegradable waste management, use of Black Soldier Fly Larvae (BSFL) is a promising method for bioconversion of waste into crude insect fat as feedstock for biodiesel production. Biodiesel is a renewable alternative to fossil fuel, but it is more susceptible to oxidative degradation over long-term storage. This study investigates the effectiveness of NaOH and CaO catalysts synthesized with citric acid (CA) in improving the oxidative stability of biodiesel. The biodiesel and biodiesel/diesel blends derived from BSFL were stored at 63 °C for 8 days. The quality of biodiesel was determined by analysis of the physicochemical and fuel properties by: Fourier transform infrared (FTIR) spectroscopy, ultraviolet visible spectrophotometer (UV-Vis), gas chromatography-mass spectroscopy (GC-MS), bomb calorimeter and titration methods. Properties that were analyzed included: peroxide value, acid value, iodine value, refractive index, density, calorific value, total oxidation (TOTOX), anisidine value and fatty acid profile. The results showed that catalysts synthesized with CA retarded the decomposition of unsaturated fatty acids, resulting in a significant delay in the formation of hydroperoxides. Besides, 10-oxo-octadecanoic acid, an antioxidant, was present in biodiesel produced using catalysts synthesized with CA, hence enhancing the stability of biodiesel against oxidation. Catalysts synthesized with CA slowed the decomposition of monounsaturated fatty acids by 6.11–11.25%. Overall, biodiesel produced using catalysts synthesized with CA was observed to degrade at a slower rate than biodiesel produced using commercial calcium oxide. The reduced degradation rates demonstrate the effectiveness of the synthesized catalysts in enhancing the oxidation stability and consequently the fuel qualities of biodiesel from BSFL under accelerated storage.
AB - In biodegradable waste management, use of Black Soldier Fly Larvae (BSFL) is a promising method for bioconversion of waste into crude insect fat as feedstock for biodiesel production. Biodiesel is a renewable alternative to fossil fuel, but it is more susceptible to oxidative degradation over long-term storage. This study investigates the effectiveness of NaOH and CaO catalysts synthesized with citric acid (CA) in improving the oxidative stability of biodiesel. The biodiesel and biodiesel/diesel blends derived from BSFL were stored at 63 °C for 8 days. The quality of biodiesel was determined by analysis of the physicochemical and fuel properties by: Fourier transform infrared (FTIR) spectroscopy, ultraviolet visible spectrophotometer (UV-Vis), gas chromatography-mass spectroscopy (GC-MS), bomb calorimeter and titration methods. Properties that were analyzed included: peroxide value, acid value, iodine value, refractive index, density, calorific value, total oxidation (TOTOX), anisidine value and fatty acid profile. The results showed that catalysts synthesized with CA retarded the decomposition of unsaturated fatty acids, resulting in a significant delay in the formation of hydroperoxides. Besides, 10-oxo-octadecanoic acid, an antioxidant, was present in biodiesel produced using catalysts synthesized with CA, hence enhancing the stability of biodiesel against oxidation. Catalysts synthesized with CA slowed the decomposition of monounsaturated fatty acids by 6.11–11.25%. Overall, biodiesel produced using catalysts synthesized with CA was observed to degrade at a slower rate than biodiesel produced using commercial calcium oxide. The reduced degradation rates demonstrate the effectiveness of the synthesized catalysts in enhancing the oxidation stability and consequently the fuel qualities of biodiesel from BSFL under accelerated storage.
KW - biodiesel
KW - Black Soldier Fly Larvae
KW - catalyst synthesis
KW - fatty acid methyl esters
KW - oxidizability index
KW - physicochemical properties
KW - total oxidation
U2 - 10.3390/fuels3030032
DO - 10.3390/fuels3030032
M3 - Article
VL - 3
SP - 533
EP - 554
JO - Fuels
JF - Fuels
SN - 2673-3994
IS - 3
ER -