Abstract
The Malvaceae family is a group of flowering plants that include approximately 244 genera, and 4225 species. Grewia mollis, and Hoheria populnea (lacebark), are examples of the Malvaceae family that are used in traditional medicine. For this study polysaccharide samples were extracted from the inner bark of Grewia mollis (unmodified (GG) and destarched grewia gum (GGDS)) and from the leaves of Hoheria populnea (lacebark polysaccharide (LB)). Wound healing properties of grewia gum and lacebark polysaccharides were investigated using 3T3 fibroblast cells cultured in supplemented DMEM. Deposition of collagen using van Gieson's stain, expression of the COL1A1 gene which encodes type I collagen using quantitative PCR, and chemotaxis using a scratch plate assay were analysed following treatment of cells with the test polysaccharides.
Quantitative PCR results indicated that all three polysaccharides increased the levels of COL1A1 mRNA, with GG showing the greatest fold change. Histological staining also indicated that the fibroblasts treated with GG deposited more collagen than control cells. Additionally, scratch assay data indicated that simulated cell ‘wounds’ treated with each polysaccharide showed increased wound closure rate over a 36 h period post treatment, with GG exhibiting the greatest effect on wound closure. Analysis of the Malvaceae derived polysaccharides indicates that they could have a positive effect on mechanisms that are integral to wound healing, potentially providing greater scientific understanding behind their use in traditional medicine.
Quantitative PCR results indicated that all three polysaccharides increased the levels of COL1A1 mRNA, with GG showing the greatest fold change. Histological staining also indicated that the fibroblasts treated with GG deposited more collagen than control cells. Additionally, scratch assay data indicated that simulated cell ‘wounds’ treated with each polysaccharide showed increased wound closure rate over a 36 h period post treatment, with GG exhibiting the greatest effect on wound closure. Analysis of the Malvaceae derived polysaccharides indicates that they could have a positive effect on mechanisms that are integral to wound healing, potentially providing greater scientific understanding behind their use in traditional medicine.
Original language | English |
---|---|
Article number | 100201 |
Number of pages | 8 |
Journal | Bioactive Carbohydrates and Dietary Fibre |
Volume | 20 |
Early online date | 9 Oct 2019 |
DOIs | |
Publication status | Published - 9 Oct 2019 |