TY - JOUR
T1 - Investigation of the molecular mechanisms underlying growth factor synergy
T2 - The role of ERK 2 activation in synergy
AU - Pearson, M. A.
AU - O'Farrell, A. M.
AU - Dexter, T. M.
AU - Whetton, A. D.
AU - Owen-Lynch, P. J.
AU - Heyworth, C. M.
PY - 1998/1/1
Y1 - 1998/1/1
N2 - Stem Cell Factor (SCF), the ligand for the c-kit proto-oncogene, has been shown to synergistically interact with other cytokines, enhancing the responsiveness of haemopoietic precursors. In this study we have examined the effects of SCF, in combination with interleukin-3 (IL-3), on FDCP-Mix A4 cells, a murine, multipotent, haemopoietic progenitor cell line. Low concentrations of IL-3 act to enhance cell survival but do not stimulate proliferation in A4 cells. Similarly, SCF when added alone, acts as a good survival stimulus, but is a poor proliferative stimulus. However, in combination with low concentrations of IL-3, SCF stimulates a synergistic enhancement of proliferation leading to a large increase in cell number after seven days. The synergy observed was not due to SCF stimulated alterations in the mRNA, protein levels or affinity of the IL-3 receptors. Therefore, interactions between cytokines at the level of cytoplasmic signalling pathways were investigated. IL-3 stimulated the rapid and transient tyrosine phosphorylation of several proteins (including those of molecular weights 130, 110, 100, 95, 80, 65, 50 and 45 kDa). Some of these proteins were identified as the Src Homology Collagen (SHC) protein, Janus kinase (JAK-2) and the Mitogen Activated Protein Kinase isoforms ERK 1 and ERK 2. IL-3 also stimulated a transient increase in the activity of both ERK 1 and 2. SCF stimulated a rapid and transient increase in the tyrosine phosphorylation of ERK 1 and ERK 2 although, coaddition of SCF with IL-3, caused no gross differences in the phosphorylation of SHC, JAK-2 or ERKs compared to those observed with IL-3 alone. Coaddition of SCF and low concentrations of IL-3 stimulated a reproducible synergistic increase in the activity of ERK 2, whereas only an additive increase in the activity of ERK 1 was observed. These results suggest that ERK 2 activation represents a point at which the two signalling pathways, stimulated by IL-3 and SCF, interact synergistically.
AB - Stem Cell Factor (SCF), the ligand for the c-kit proto-oncogene, has been shown to synergistically interact with other cytokines, enhancing the responsiveness of haemopoietic precursors. In this study we have examined the effects of SCF, in combination with interleukin-3 (IL-3), on FDCP-Mix A4 cells, a murine, multipotent, haemopoietic progenitor cell line. Low concentrations of IL-3 act to enhance cell survival but do not stimulate proliferation in A4 cells. Similarly, SCF when added alone, acts as a good survival stimulus, but is a poor proliferative stimulus. However, in combination with low concentrations of IL-3, SCF stimulates a synergistic enhancement of proliferation leading to a large increase in cell number after seven days. The synergy observed was not due to SCF stimulated alterations in the mRNA, protein levels or affinity of the IL-3 receptors. Therefore, interactions between cytokines at the level of cytoplasmic signalling pathways were investigated. IL-3 stimulated the rapid and transient tyrosine phosphorylation of several proteins (including those of molecular weights 130, 110, 100, 95, 80, 65, 50 and 45 kDa). Some of these proteins were identified as the Src Homology Collagen (SHC) protein, Janus kinase (JAK-2) and the Mitogen Activated Protein Kinase isoforms ERK 1 and ERK 2. IL-3 also stimulated a transient increase in the activity of both ERK 1 and 2. SCF stimulated a rapid and transient increase in the tyrosine phosphorylation of ERK 1 and ERK 2 although, coaddition of SCF with IL-3, caused no gross differences in the phosphorylation of SHC, JAK-2 or ERKs compared to those observed with IL-3 alone. Coaddition of SCF and low concentrations of IL-3 stimulated a reproducible synergistic increase in the activity of ERK 2, whereas only an additive increase in the activity of ERK 1 was observed. These results suggest that ERK 2 activation represents a point at which the two signalling pathways, stimulated by IL-3 and SCF, interact synergistically.
KW - ERK stimulation
KW - Haemopoiesis
KW - IL-3
KW - MAP kinase and synergy
KW - Stem cell factor
KW - Tyrosine phosphorylation
UR - http://www.scopus.com/inward/record.url?scp=0031671336&partnerID=8YFLogxK
U2 - 10.3109/08977199809017484
DO - 10.3109/08977199809017484
M3 - Article
C2 - 9714913
AN - SCOPUS:0031671336
VL - 15
SP - 293
EP - 306
JO - Growth Factors
JF - Growth Factors
SN - 0897-7194
IS - 4
ER -