Abstract
Most of the existing work in the field of Qualitative Spatial Temporal Reasoning (QSTR) has focussed on comparatively small constraint networks that consist of hundreds or at most thousands of relations. Recently we have seen the emergence of much larger qualitative spatial knowledge graphs that feature hundreds of thousands and millions of relations. Traditional approaches to QSTR are unable to reason over networks of such size.
In this article we describe ParQR, a parallel, distributed implementation of QSTR techniques that addresses the challenge of reasoning over large-scale qualitative spatial and temporal datasets. We have implemented ParQR using the Apache Spark framework, and evaluated our approach using both large scale synthetic datasets and real-world knowledge graphs. We show that our approach scales effectively, is able to handle constraint networks consisting of millions of relations, and outperforms current distributed implementations of QSTR.
In this article we describe ParQR, a parallel, distributed implementation of QSTR techniques that addresses the challenge of reasoning over large-scale qualitative spatial and temporal datasets. We have implemented ParQR using the Apache Spark framework, and evaluated our approach using both large scale synthetic datasets and real-world knowledge graphs. We show that our approach scales effectively, is able to handle constraint networks consisting of millions of relations, and outperforms current distributed implementations of QSTR.
Original language | English |
---|---|
Pages (from-to) | 214-226 |
Number of pages | 13 |
Journal | Knowledge-Based Systems |
Volume | 163 |
Early online date | 30 Aug 2018 |
DOIs | |
Publication status | Published - 1 Jan 2019 |
Fingerprint
Dive into the research topics of 'Large scale distributed spatio-temporal reasoning using real-world knowledge graphs'. Together they form a unique fingerprint.Profiles
-
Matthew Mantle
- Department of Computer Science - Senior Lecturer
- Centre for Planning, Autonomy and Representation of Knowledge
- Centre for Autonomous and Intelligent Systems - Member
Person: Academic