Low complexity detectors for cooperative wireless sensor networks

Qasim Zeeshan Ahmed, Mohamed Slim Alouini, Sonia Aissa

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)


This paper investigates and compares the performance of wireless sensor networks (WSN) when sensors operate on the principles of cooperative communications. We consider a scenario where the source transmits signals to the destination with the help of L sensors. As the destination has the capacity of processing only U out of these L signals, U strongest signals are selected while the remaining (L - U) signals are suppressed. A preprocessing block similar to channel-shortening (CS) is proposed in this contribution. However, this preprocessing block employs rank-reduction technique instead of CS. This detector operates on the principles of principal components (PC). From our simulations it can be observed that this detector is capable of achieving a similar bit error rate (BER) performance as the full-rank MMSE detector with significantly lower complexity. It outperforms the CS-based detector in terms of BER performance when using fixed amplification factor. However, for variable gain amplification factor a tradeoff between the diversity gain and the receiver complexity can be observed. From the simulations it can be concluded that the BER performance of the PC-based detector when using variable gain amplification factor are better than that of the CS-based detector for lower signal to noise ratio.

Original languageEnglish
Title of host publication2012 IEEE Vehicular Technology Conference, VTC Fall 2012 - Proceedings
Number of pages5
Publication statusPublished - 1 Dec 2012
Externally publishedYes
Event76th IEEE Vehicular Technology Conference - Québec City Convention Center, Québec City, Canada
Duration: 3 Sep 20126 Sep 2012
Conference number: 76


Conference76th IEEE Vehicular Technology Conference
Abbreviated titleVTC2012-Fall
CityQuébec City
Internet address


Dive into the research topics of 'Low complexity detectors for cooperative wireless sensor networks'. Together they form a unique fingerprint.

Cite this