Abstract
Today there is a need to provide thermally efficient walls, while at the same time to increase the mechanical properties of old unreinforced masonry walls that will not require large amounts of energy in the retrofitting or deconstruction processes. To address this problem, this paper gives the results of shear tests carried out on masonry panels made of solid bricks retrofitted with a new technique based on the use of glass fiber-reinforced polymers (GFRP) grids inserted into a thermal insulating jacketing. This was made of different low-strength lime-based mortars. Tests were carried out in laboratory and results were used for the determination of the shear modulus and strength of the wall panels before and after the application of the GFRP reinforcement. Retrofitted panels exhibited a significant enhancement in the lateral capacity when compared to the control panels. The thermal performance of the proposed mortars was also investigated both with and without GFRP. Low values of thermal conductivity were found, especially for the samples with GFRP; a reduction of the thermal transmittance value in the 34–45 % range was also obtained by applying 45 mm layer of coating in conventional masonry walls.
Original language | English |
---|---|
Pages (from-to) | 3957-3968 |
Number of pages | 12 |
Journal | Materials and Structures/Materiaux et Constructions |
Volume | 49 |
Issue number | 10 |
Early online date | 18 Dec 2015 |
DOIs | |
Publication status | Published - 1 Oct 2016 |
Externally published | Yes |