Abstract
We have applied DFT and molecular modeling to investigate the interaction between carbon-based nanoparticles (CNPs) and geosorbents using the adsorption of buckminsterfullerene (C60) on pyrophyllite and comparing it to the aggregation of C60 molecules. The approach is transferable and can be readily applied to more complex CNP-clay systems. We predict that C 60 molecules adsorb preferably on the mineral surface and that the most stable adsorption site is the ditrigonal cavity of the surface. The free energy of adsorption on pyrophyllite was calculated to be more favorable than aggregation both in a vacuum (-0.47 vs -0.41 eV) and in water (-0.25 vs -0.19 eV). In aqueous environments, there are energy barriers as the C60 molecule approaches either a surface or another C60 molecule, and these occur upon disruption of the hydration layers that surround each component. There are also free energy minima that correspond to outer-sphere and more favorable inner-sphere complexes. We expect this adsorptive behavior to be a general feature of CNP-clay systems, and as clays are ubiquitous in the environment, it will offer an inexpensive remediative method to prevent the widespread impact of molecular C60 and CNPs.
Original language | English |
---|---|
Pages (from-to) | 6602-6611 |
Number of pages | 10 |
Journal | Journal of Physical Chemistry A |
Volume | 117 |
Issue number | 30 |
DOIs | |
Publication status | Published - 1 Aug 2013 |
Externally published | Yes |