Modelling of creep deformation and creep fracture

Qiang Xu, Zhongyu Lu

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

This chapter reports the recent progresses in: 1) the development of a modified hyperbolic sine law able to depict the minimum creep strain rate over a wider range of stress level; 2) the development of the creep fracture criterion and model based on the cavity area fraction along grain boundary calibrated with the most representative and comprehensive cavitation data obtained from X-ray synchrotron investigation; and 3) the development of mesoscopic composite approach modelling of creep deformation and creep damage. The first progress facilitates to overcome the difficulty in creep deformation modelling caused by stress breakdown phenomenon; the second progress is of a really scientific sound and fundamental new approach, first in the world; the third progress provides the concept and tool, at the appropriate size scale, for the modelling of the creep deformation and creep fracture. They all contribute to the specific knowledge and new methodology to the topic area. Furthermore, it is expected that cavitation fracture modelling methodology reported here will find use in the analysis and modelling of other type of failure such as ductile and fatigue failure. This Chapter presents an excellent example of interdisciplinary collaborative research and it advocates further such collaboration in its conclusion.
Original languageEnglish
Title of host publicationStrength of Materials
EditorsHector Jaramillo S.
PublisherIntechOpen
Chapter7
ISBN (Electronic)9781838801434
ISBN (Print)9781789859935, 9781789859942
DOIs
Publication statusPublished - 25 Mar 2020

Fingerprint

Dive into the research topics of 'Modelling of creep deformation and creep fracture'. Together they form a unique fingerprint.

Cite this