TY - JOUR
T1 - Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis
AU - Morris, Gordon A.
AU - de al Torre, José García
AU - Ortega, Alvaro
AU - Castile, Jonathan
AU - Smith, Alan
AU - Harding, Stephen E.
PY - 2008/12
Y1 - 2008/12
N2 - The flexibility/rigidity of pectins plays an important part in their structure-function relationship and therefore on their commercial applications in the food and biomedical industries. Earlier studies based on sedimentation analysis in the ultracentrifuge have focussed on molecular weight distributions and qualitative and semi-quantitative descriptions based on power law and Wales-van Holde treatments of conformation in terms of "extended" conformations [Harding, S. E., Berth, G., Ball, A., Mitchell, J.R., & Garcìa de la Torre, J. (1991). The molecular weight distribution and conformation of citrus pectins in solution studied by hydrodynamics. Carbohydrate Polymers, 168, 1-15; Morris, G. A., Foster, T. J., & Harding, S.E. (2000). The effect of degree of esterification on the hydrodynamic properties of citrus pectin. Food Hydrocolloids, 14, 227-235]. In the present study, four pectins of low degree of esterification 17-27% and one of high degree of esterification (70%) were characterised in aqueous solution (0.1 M NaCl) in terms of intrinsic viscosity [η], sedimentation coefficient (s°20,w) and weight average molar mass (Mw). Solution conformation/flexibility was estimated qualitatively using the conformation zoning method [Pavlov, G.M., Rowe, A.J., & Harding, S.E. (1997). Conformation zoning of large molecules using the analytical ultracentrifuge. Trends in Analytical Chemistry, 16, 401-405] and quantitatively (persistence length Lp) using the traditional Bohdanecky and Yamakawa-Fujii relations combined together by minimisation of a target function. Sedimentation conformation zoning showed an extended coil (Type C) conformation and persistence lengths all within the range Lp=10-13 nm (for a fixed mass per unit length).
AB - The flexibility/rigidity of pectins plays an important part in their structure-function relationship and therefore on their commercial applications in the food and biomedical industries. Earlier studies based on sedimentation analysis in the ultracentrifuge have focussed on molecular weight distributions and qualitative and semi-quantitative descriptions based on power law and Wales-van Holde treatments of conformation in terms of "extended" conformations [Harding, S. E., Berth, G., Ball, A., Mitchell, J.R., & Garcìa de la Torre, J. (1991). The molecular weight distribution and conformation of citrus pectins in solution studied by hydrodynamics. Carbohydrate Polymers, 168, 1-15; Morris, G. A., Foster, T. J., & Harding, S.E. (2000). The effect of degree of esterification on the hydrodynamic properties of citrus pectin. Food Hydrocolloids, 14, 227-235]. In the present study, four pectins of low degree of esterification 17-27% and one of high degree of esterification (70%) were characterised in aqueous solution (0.1 M NaCl) in terms of intrinsic viscosity [η], sedimentation coefficient (s°20,w) and weight average molar mass (Mw). Solution conformation/flexibility was estimated qualitatively using the conformation zoning method [Pavlov, G.M., Rowe, A.J., & Harding, S.E. (1997). Conformation zoning of large molecules using the analytical ultracentrifuge. Trends in Analytical Chemistry, 16, 401-405] and quantitatively (persistence length Lp) using the traditional Bohdanecky and Yamakawa-Fujii relations combined together by minimisation of a target function. Sedimentation conformation zoning showed an extended coil (Type C) conformation and persistence lengths all within the range Lp=10-13 nm (for a fixed mass per unit length).
KW - Conformation zoning
KW - Intrinsic viscosity
KW - Persistence length
KW - Sedimentation coefficient
KW - Target function
UR - http://www.scopus.com/inward/record.url?scp=44549089098&partnerID=8YFLogxK
U2 - 10.1016/j.foodhyd.2007.09.005
DO - 10.1016/j.foodhyd.2007.09.005
M3 - Article
AN - SCOPUS:44549089098
VL - 22
SP - 1435
EP - 1442
JO - Food Hydrocolloids
JF - Food Hydrocolloids
SN - 0268-005X
IS - 8
ER -