New Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system at the University of Huddersfield

G. Greaves, A.H. Mir, R.W. Harrison, M.A. Tunes, S.E. Donnelly, J.A. Hinks

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Radiation damage is a complex dynamic process with multiple atomic mechanisms interacting and competing to determine the end state of the material. Transmission electron microscopy (TEM) with in-situ ion irradiation allows direct observation of the microstructural evolution of a sample from the virgin to end state. A new TEM with in-situ ion irradiation has been established at the University of Huddersfield: the Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system. MIAMI-2 combines a 300 kV TEM with medium-energy 350 kV and low-energy 20 kV ion beamlines. Whilst the medium-energy beamline can be used for most species up to Au, the low-energy beamline is primarily designed for implanting light-ion species such as H and He. These can be used individually or mixed prior to entering the TEM allowing dual-ion-beam irradiation experiments to, for example, simulate the combined effects of displacement damage and the introduction of He from (n, α) nuclear reactions. The TEM can operate from 60–300 kV and is equipped with a 16 megapixel digital camera, an energy-filtered imaging system and an energy-dispersive X-ray spectrometer for elemental and chemical analysis. Sample temperature can be varied from –170 °C to 1300 °C and a gas injection system enables gaseous environments at pressures of up to 10 −2 mbar at the sample position. The new MIAMI-2 system is a powerful tool for the investigation of radiation damage in a wide range of materials which are exposed to irradiating environments either during processing and/or whilst in-service in areas including nuclear applications, nanotechnology, semiconductor processing and extraterrestrial environments.

LanguageEnglish
Pages37-43
Number of pages7
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume931
Early online date9 Apr 2019
DOIs
Publication statusPublished - 1 Jul 2019

Fingerprint

ion accelerators
Particle accelerators
Microscopes
accelerators
microscopes
Transmission electron microscopy
Ions
transmission electron microscopy
Radiation damage
Ion bombardment
ion irradiation
radiation damage
energy
X ray spectrometers
extraterrestrial environments
Nuclear reactions
Microstructural evolution
Digital cameras
gas injection
Processing

Cite this

@article{354dbac8c7044471b1db793d38c62bc8,
title = "New Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system at the University of Huddersfield",
abstract = "Radiation damage is a complex dynamic process with multiple atomic mechanisms interacting and competing to determine the end state of the material. Transmission electron microscopy (TEM) with in-situ ion irradiation allows direct observation of the microstructural evolution of a sample from the virgin to end state. A new TEM with in-situ ion irradiation has been established at the University of Huddersfield: the Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system. MIAMI-2 combines a 300 kV TEM with medium-energy 350 kV and low-energy 20 kV ion beamlines. Whilst the medium-energy beamline can be used for most species up to Au, the low-energy beamline is primarily designed for implanting light-ion species such as H and He. These can be used individually or mixed prior to entering the TEM allowing dual-ion-beam irradiation experiments to, for example, simulate the combined effects of displacement damage and the introduction of He from (n, α) nuclear reactions. The TEM can operate from 60–300 kV and is equipped with a 16 megapixel digital camera, an energy-filtered imaging system and an energy-dispersive X-ray spectrometer for elemental and chemical analysis. Sample temperature can be varied from –170 °C to 1300 °C and a gas injection system enables gaseous environments at pressures of up to 10 −2 mbar at the sample position. The new MIAMI-2 system is a powerful tool for the investigation of radiation damage in a wide range of materials which are exposed to irradiating environments either during processing and/or whilst in-service in areas including nuclear applications, nanotechnology, semiconductor processing and extraterrestrial environments.",
keywords = "In-situ ion irradiation, Radiation damage, Transmission electron microscopy",
author = "G. Greaves and A.H. Mir and R.W. Harrison and M.A. Tunes and S.E. Donnelly and J.A. Hinks",
year = "2019",
month = "7",
day = "1",
doi = "10.1016/j.nima.2019.03.074",
language = "English",
volume = "931",
pages = "37--43",
journal = "Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
issn = "0168-9002",
publisher = "Elsevier",

}

TY - JOUR

T1 - New Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system at the University of Huddersfield

AU - Greaves, G.

AU - Mir, A.H.

AU - Harrison, R.W.

AU - Tunes, M.A.

AU - Donnelly, S.E.

AU - Hinks, J.A.

PY - 2019/7/1

Y1 - 2019/7/1

N2 - Radiation damage is a complex dynamic process with multiple atomic mechanisms interacting and competing to determine the end state of the material. Transmission electron microscopy (TEM) with in-situ ion irradiation allows direct observation of the microstructural evolution of a sample from the virgin to end state. A new TEM with in-situ ion irradiation has been established at the University of Huddersfield: the Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system. MIAMI-2 combines a 300 kV TEM with medium-energy 350 kV and low-energy 20 kV ion beamlines. Whilst the medium-energy beamline can be used for most species up to Au, the low-energy beamline is primarily designed for implanting light-ion species such as H and He. These can be used individually or mixed prior to entering the TEM allowing dual-ion-beam irradiation experiments to, for example, simulate the combined effects of displacement damage and the introduction of He from (n, α) nuclear reactions. The TEM can operate from 60–300 kV and is equipped with a 16 megapixel digital camera, an energy-filtered imaging system and an energy-dispersive X-ray spectrometer for elemental and chemical analysis. Sample temperature can be varied from –170 °C to 1300 °C and a gas injection system enables gaseous environments at pressures of up to 10 −2 mbar at the sample position. The new MIAMI-2 system is a powerful tool for the investigation of radiation damage in a wide range of materials which are exposed to irradiating environments either during processing and/or whilst in-service in areas including nuclear applications, nanotechnology, semiconductor processing and extraterrestrial environments.

AB - Radiation damage is a complex dynamic process with multiple atomic mechanisms interacting and competing to determine the end state of the material. Transmission electron microscopy (TEM) with in-situ ion irradiation allows direct observation of the microstructural evolution of a sample from the virgin to end state. A new TEM with in-situ ion irradiation has been established at the University of Huddersfield: the Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system. MIAMI-2 combines a 300 kV TEM with medium-energy 350 kV and low-energy 20 kV ion beamlines. Whilst the medium-energy beamline can be used for most species up to Au, the low-energy beamline is primarily designed for implanting light-ion species such as H and He. These can be used individually or mixed prior to entering the TEM allowing dual-ion-beam irradiation experiments to, for example, simulate the combined effects of displacement damage and the introduction of He from (n, α) nuclear reactions. The TEM can operate from 60–300 kV and is equipped with a 16 megapixel digital camera, an energy-filtered imaging system and an energy-dispersive X-ray spectrometer for elemental and chemical analysis. Sample temperature can be varied from –170 °C to 1300 °C and a gas injection system enables gaseous environments at pressures of up to 10 −2 mbar at the sample position. The new MIAMI-2 system is a powerful tool for the investigation of radiation damage in a wide range of materials which are exposed to irradiating environments either during processing and/or whilst in-service in areas including nuclear applications, nanotechnology, semiconductor processing and extraterrestrial environments.

KW - In-situ ion irradiation

KW - Radiation damage

KW - Transmission electron microscopy

UR - http://www.scopus.com/inward/record.url?scp=85064072964&partnerID=8YFLogxK

U2 - 10.1016/j.nima.2019.03.074

DO - 10.1016/j.nima.2019.03.074

M3 - Article

VL - 931

SP - 37

EP - 43

JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

T2 - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

SN - 0168-9002

ER -