TY - JOUR
T1 - On-Shore Plastic Waste Detection with YOLOv5 and RGB-Near-Infrared Fusion
T2 - A State-of-the-Art Solution for Accurate and Efficient Environmental Monitoring
AU - Tamin, Owen
AU - Moung, Ervin Gubin
AU - Dargham, Jamal Ahmad
AU - Yahya, Farashazillah
AU - Farzamnia, Ali
AU - Sia, Florence
AU - Naim, Nur Faraha Mohd
AU - Angeline, Lorita
N1 - Funding Information:
The authors thank the Ministry of Higher Education Malaysia and Universiti Malaysia Sabah for supporting this study.
Funding Information:
This research is supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme (FRGS/1/2020/ICT06/UMS/02/1).
Publisher Copyright:
© 2023 by the authors.
PY - 2023/6/1
Y1 - 2023/6/1
N2 - Plastic waste is a growing environmental concern that poses a significant threat to onshore ecosystems, human health, and wildlife. The accumulation of plastic waste in oceans has reached a staggering estimate of over eight million tons annually, leading to hazardous outcomes in marine life and the food chain. Plastic waste is prevalent in urban areas, posing risks to animals that may ingest it or become entangled in it, and negatively impacting the economy and tourism industry. Effective plastic waste management requires a comprehensive approach that includes reducing consumption, promoting recycling, and developing innovative technologies such as automated plastic detection systems. The development of accurate and efficient plastic detection methods is therefore essential for effective waste management. To address this challenge, machine learning techniques such as the YOLOv5 model have emerged as promising tools for developing automated plastic detection systems. Furthermore, there is a need to study both visible light (RGB) and near-infrared (RGNIR) as part of plastic waste detection due to the unique properties of plastic waste in different environmental settings. To this end, two plastic waste datasets, comprising RGB and RGNIR images, were utilized to train the proposed model, YOLOv5m. The performance of the model was then evaluated using a 10-fold cross-validation method on both datasets. The experiment was extended by adding background images into the training dataset to reduce false positives. An additional experiment was carried out to fuse both the RGB and RGNIR datasets. A performance-metric score called the Weighted Metric Score (WMS) was proposed, where the WMS equaled the sum of the mean average precision at the intersection over union (IoU) threshold of 0.5 ([email protected]) × 0.1 and the mean average precision averaged over different IoU thresholds ranging from 0.5 to 0.95 ([email protected]:0.95) × 0.9. In addition, a 10-fold cross-validation procedure was implemented. Based on the results, the proposed model achieved the best performance using the fusion of the RGB and RGNIR datasets when evaluated on the testing dataset with a mean of [email protected], [email protected]:0.95, and a WMS of 92.96% ± 2.63%, 69.47% ± 3.11%, and 71.82% ± 3.04%, respectively. These findings indicate that utilizing both normal visible light and the near-infrared spectrum as feature representations in machine learning could lead to improved performance in plastic waste detection. This opens new opportunities in the development of automated plastic detection systems for use in fields such as automation, environmental management, and resource management.
AB - Plastic waste is a growing environmental concern that poses a significant threat to onshore ecosystems, human health, and wildlife. The accumulation of plastic waste in oceans has reached a staggering estimate of over eight million tons annually, leading to hazardous outcomes in marine life and the food chain. Plastic waste is prevalent in urban areas, posing risks to animals that may ingest it or become entangled in it, and negatively impacting the economy and tourism industry. Effective plastic waste management requires a comprehensive approach that includes reducing consumption, promoting recycling, and developing innovative technologies such as automated plastic detection systems. The development of accurate and efficient plastic detection methods is therefore essential for effective waste management. To address this challenge, machine learning techniques such as the YOLOv5 model have emerged as promising tools for developing automated plastic detection systems. Furthermore, there is a need to study both visible light (RGB) and near-infrared (RGNIR) as part of plastic waste detection due to the unique properties of plastic waste in different environmental settings. To this end, two plastic waste datasets, comprising RGB and RGNIR images, were utilized to train the proposed model, YOLOv5m. The performance of the model was then evaluated using a 10-fold cross-validation method on both datasets. The experiment was extended by adding background images into the training dataset to reduce false positives. An additional experiment was carried out to fuse both the RGB and RGNIR datasets. A performance-metric score called the Weighted Metric Score (WMS) was proposed, where the WMS equaled the sum of the mean average precision at the intersection over union (IoU) threshold of 0.5 ([email protected]) × 0.1 and the mean average precision averaged over different IoU thresholds ranging from 0.5 to 0.95 ([email protected]:0.95) × 0.9. In addition, a 10-fold cross-validation procedure was implemented. Based on the results, the proposed model achieved the best performance using the fusion of the RGB and RGNIR datasets when evaluated on the testing dataset with a mean of [email protected], [email protected]:0.95, and a WMS of 92.96% ± 2.63%, 69.47% ± 3.11%, and 71.82% ± 3.04%, respectively. These findings indicate that utilizing both normal visible light and the near-infrared spectrum as feature representations in machine learning could lead to improved performance in plastic waste detection. This opens new opportunities in the development of automated plastic detection systems for use in fields such as automation, environmental management, and resource management.
KW - automated plastic detection
KW - data processing
KW - deep learning
KW - environmental impact
KW - image feature learning
KW - machine learning
KW - near-infrared
KW - object detection
KW - plastic waste detection
KW - RGB-NIR feature representation
KW - YOLOv5
UR - http://www.scopus.com/inward/record.url?scp=85163601689&partnerID=8YFLogxK
U2 - 10.3390/bdcc7020103
DO - 10.3390/bdcc7020103
M3 - Article
AN - SCOPUS:85163601689
VL - 7
JO - Big Data and Cognitive Computing
JF - Big Data and Cognitive Computing
SN - 2504-2289
IS - 2
M1 - 103
ER -