Opioid receptor involvement in the adaptation to motion sickness in Suncus murinus

Farideh A. Javid, Robert J. Naylor

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

The aim of the present study was to investigate an opioid receptor involvement in the adaptation response to motion sickness in Suncus murinus. Different groups of animals were treated intraperitoneally with either saline, morphine (0.1 and 1.0 mg/kg), naloxone (1.0, 10.0 and 5.0 mg/kg) or a combination of naloxone plus morphine in the absence or 30 min prior to a horizontal motion stimulus of 1 Hz and 40 mm amplitude. For the study of adaptation, different groups received saline on the first trial, and in subsequent trials (every 2 days) they received either saline, naloxone (1.0 and 10.0 mg/kg, ip) or morphine (0.1 mg/kg, ip) 30 min prior to the motion stimulus. Pretreatment with morphine caused a dose-related reduction in emesis induced by a single challenge to a motion stimulus. Pretreatment with naloxone alone did not induce emesis in its own right nor did it modify emesis induced by a single challenge to a motion stimulus. However, pretreatment with naloxone (5.0 mg/kg, ip) revealed an emetic response to morphine (P < .001) (1.0 mg/kg, ip) and antagonised the reduction of motion sickness induced by morphine. In animals that received saline or naloxone (1.0 mg/kg), a motion stimulus inducing emesis decreased the responsiveness of animals to a second and subsequent motion stimulus challenge when applied every 2 days for 11 trials. However, the animals receiving naloxone 10.0 mg/kg prior to the second and subsequent challenges showed no significant reduction in the intensity of emesis compared to the first trial. The data are revealing of an emetic potential of morphine when administered in the presence of a naloxone pretreatment. The administration of naloxone is also revealing of an additional inhibitory opioid system whose activation by endogenous opioid(s) may play a role in the adaptation to motion sickness on repeated challenge in S. murinus.

Original languageEnglish
Pages (from-to)761-767
Number of pages7
JournalPharmacology Biochemistry and Behavior
Volume68
Issue number4
DOIs
Publication statusPublished - Apr 2001
Externally publishedYes

Fingerprint

Dive into the research topics of 'Opioid receptor involvement in the adaptation to motion sickness in Suncus murinus'. Together they form a unique fingerprint.

Cite this