Optimal Design of Capsule Transporting Pipeline carrying Spherical Capsules

Taimoor Asim, Rakesh Mishra, Kuldip Ubbi

Research output: Contribution to journalConference article

Abstract

A capsule pipeline transports material or cargo in capsules propelled by fluid flowing through a pipeline. The cargo may either be contained in capsules (such as wheat enclosed inside sealed cylindrical containers), or may itself be the capsules (such as coal compressed into the shape of a cylinder or sphere). As the concept of capsule transportation is relatively new, the capsule pipelines need to be designed optimally for commercial viability. An optimal design of such a pipeline would have minimum pressure drop due to the presence of the solid medium in the pipeline, which corresponds to minimum head loss and hence minimum pumping power required to drive the capsules and the transporting fluid. The total cost for the manufacturing and maintenance of such pipelines is yet another important variable that needs to be considered for the widespread commercial acceptance of capsule transporting pipelines. To address this, the optimisation technique presented here is based on the least-cost principle. Pressure drop relationships have been incorporated to calculate the pumping requirements for the system. The maintenance and manufacturing costs have been computed separately to analyse their effects on the optimisation process. A design example has been included to show the usage of the model presented. The results indicate that for a specific throughput, there exists an optimum diameter of the pipeline for which the total cost for the piping system is at its minimum.

LanguageEnglish
Article number012070
Number of pages8
JournalJournal of Physics: Conference Series
Volume364
Issue number1
DOIs
Publication statusPublished - 2012
Event25th International Congress on Condition Monitoring and Diagnostic Engineering: Sustained Prosperity through Proactive Monitoring, Diagnosis and Management - University of Huddersfield, Huddersfield, United Kingdom
Duration: 18 Jun 201220 Jun 2012
Conference number: 25
http://compeng.hud.ac.uk/comadem2012/ (Link to Conference Website )

Fingerprint

capsules
costs
cargo
pressure drop
maintenance
pumping
manufacturing
optimization
wheat
fluids
containers
viability
acceptability
coal
requirements

Cite this

@article{1759638389754320be7f159c0900ad10,
title = "Optimal Design of Capsule Transporting Pipeline carrying Spherical Capsules",
abstract = "A capsule pipeline transports material or cargo in capsules propelled by fluid flowing through a pipeline. The cargo may either be contained in capsules (such as wheat enclosed inside sealed cylindrical containers), or may itself be the capsules (such as coal compressed into the shape of a cylinder or sphere). As the concept of capsule transportation is relatively new, the capsule pipelines need to be designed optimally for commercial viability. An optimal design of such a pipeline would have minimum pressure drop due to the presence of the solid medium in the pipeline, which corresponds to minimum head loss and hence minimum pumping power required to drive the capsules and the transporting fluid. The total cost for the manufacturing and maintenance of such pipelines is yet another important variable that needs to be considered for the widespread commercial acceptance of capsule transporting pipelines. To address this, the optimisation technique presented here is based on the least-cost principle. Pressure drop relationships have been incorporated to calculate the pumping requirements for the system. The maintenance and manufacturing costs have been computed separately to analyse their effects on the optimisation process. A design example has been included to show the usage of the model presented. The results indicate that for a specific throughput, there exists an optimum diameter of the pipeline for which the total cost for the piping system is at its minimum.",
author = "Taimoor Asim and Rakesh Mishra and Kuldip Ubbi",
year = "2012",
doi = "10.1088/1742-6596/364/1/012070",
language = "English",
volume = "364",
journal = "Journal of Physics: Conference Series",
issn = "1742-6588",
publisher = "IOP Publishing Ltd.",
number = "1",

}

Optimal Design of Capsule Transporting Pipeline carrying Spherical Capsules. / Asim, Taimoor; Mishra, Rakesh; Ubbi, Kuldip.

In: Journal of Physics: Conference Series, Vol. 364, No. 1, 012070, 2012.

Research output: Contribution to journalConference article

TY - JOUR

T1 - Optimal Design of Capsule Transporting Pipeline carrying Spherical Capsules

AU - Asim, Taimoor

AU - Mishra, Rakesh

AU - Ubbi, Kuldip

PY - 2012

Y1 - 2012

N2 - A capsule pipeline transports material or cargo in capsules propelled by fluid flowing through a pipeline. The cargo may either be contained in capsules (such as wheat enclosed inside sealed cylindrical containers), or may itself be the capsules (such as coal compressed into the shape of a cylinder or sphere). As the concept of capsule transportation is relatively new, the capsule pipelines need to be designed optimally for commercial viability. An optimal design of such a pipeline would have minimum pressure drop due to the presence of the solid medium in the pipeline, which corresponds to minimum head loss and hence minimum pumping power required to drive the capsules and the transporting fluid. The total cost for the manufacturing and maintenance of such pipelines is yet another important variable that needs to be considered for the widespread commercial acceptance of capsule transporting pipelines. To address this, the optimisation technique presented here is based on the least-cost principle. Pressure drop relationships have been incorporated to calculate the pumping requirements for the system. The maintenance and manufacturing costs have been computed separately to analyse their effects on the optimisation process. A design example has been included to show the usage of the model presented. The results indicate that for a specific throughput, there exists an optimum diameter of the pipeline for which the total cost for the piping system is at its minimum.

AB - A capsule pipeline transports material or cargo in capsules propelled by fluid flowing through a pipeline. The cargo may either be contained in capsules (such as wheat enclosed inside sealed cylindrical containers), or may itself be the capsules (such as coal compressed into the shape of a cylinder or sphere). As the concept of capsule transportation is relatively new, the capsule pipelines need to be designed optimally for commercial viability. An optimal design of such a pipeline would have minimum pressure drop due to the presence of the solid medium in the pipeline, which corresponds to minimum head loss and hence minimum pumping power required to drive the capsules and the transporting fluid. The total cost for the manufacturing and maintenance of such pipelines is yet another important variable that needs to be considered for the widespread commercial acceptance of capsule transporting pipelines. To address this, the optimisation technique presented here is based on the least-cost principle. Pressure drop relationships have been incorporated to calculate the pumping requirements for the system. The maintenance and manufacturing costs have been computed separately to analyse their effects on the optimisation process. A design example has been included to show the usage of the model presented. The results indicate that for a specific throughput, there exists an optimum diameter of the pipeline for which the total cost for the piping system is at its minimum.

UR - http://www.scopus.com/inward/record.url?scp=84862312439&partnerID=8YFLogxK

U2 - 10.1088/1742-6596/364/1/012070

DO - 10.1088/1742-6596/364/1/012070

M3 - Conference article

VL - 364

JO - Journal of Physics: Conference Series

T2 - Journal of Physics: Conference Series

JF - Journal of Physics: Conference Series

SN - 1742-6588

IS - 1

M1 - 012070

ER -