TY - JOUR
T1 - Optimisation of wheelset maintenance by using a reduced flange wear wheel profile
AU - Muhamedsalih, Yousif
AU - Tucker, Gareth
AU - Stow, Julian
N1 - Funding Information:
This project has been undertaken as part of the Strategic Partnership between RSSB and the University of Huddersfield. The authors would like to thank the industry members of the project steering group for providing advice, guidance and practical support for this project. The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study is supported by Rail Safety and Standards Board (COF-UOH-22).
Funding Information:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study is supported by Rail Safety and Standards Board (COF-UOH-22).
Publisher Copyright:
© IMechE 2022.
PY - 2023/2/1
Y1 - 2023/2/1
N2 - This paper investigates whether it is possible to develop a wheel profile design that will extend wheelset life compared to an existing commonly used Great Britain passenger wheel profile, the P8. The P8 wheel profile was originally developed in the late 1960s as an alternative to a 1:20 coned wheel profile (the P1). The P1 often required frequent turning as the conicity could increase quickly over time as the wheel wore in service. The P8 was designed based on an average worn shape of a P1 wheel. The P8 was found to stay closer to its original shape as it wore in service. However, new P8 wheels or newly profiled P8 wheels tend to experience a high initial flange wear rate in the first 20,000–30,000 miles, until the worn wheel shape reaches ‘dimensional stability’; after this, the flange width typically remains relatively constant. A ‘Reduced Flange Wear’ (RFW) wheel profile has been developed, based on the P8 profile but with a modified flange root geometry. The Wheel Profile Damage Model has been used to calculate how the proposed RFW wheel profile could reduce wear rates and therefore increase wheelset life. This paper presents results for a typical electric multiple unit train (EMU1) running on rural and suburban routes and a higher speed variant (EMU2) running on an inter-city route. The effect of the proposed RFW profile on rail rolling contact fatigue (RCF) has also been evaluated using the Whole Life Rail Model, for the same routes. The results suggest that the proposed RFW profile does reduce flange wear compared to a P8, with larger reductions achieved on routes that are more curvaceous. For wheel turning based purely on restoring wheel profile geometry, the RFW profile could half the amount of material removed at each turning (based on turning wheels at 250,000 miles). Furthermore, the results show that the RFW profile experiences slightly less wheel RCF damage than the P8. When new, the RFW profile appears to cause slightly higher rail RCF than a new P8 (For radii 700 m < R < 1300 m); however, the results suggest that worn RFW profiles cause very similar rail RCF to that caused by worn P8 wheels.
AB - This paper investigates whether it is possible to develop a wheel profile design that will extend wheelset life compared to an existing commonly used Great Britain passenger wheel profile, the P8. The P8 wheel profile was originally developed in the late 1960s as an alternative to a 1:20 coned wheel profile (the P1). The P1 often required frequent turning as the conicity could increase quickly over time as the wheel wore in service. The P8 was designed based on an average worn shape of a P1 wheel. The P8 was found to stay closer to its original shape as it wore in service. However, new P8 wheels or newly profiled P8 wheels tend to experience a high initial flange wear rate in the first 20,000–30,000 miles, until the worn wheel shape reaches ‘dimensional stability’; after this, the flange width typically remains relatively constant. A ‘Reduced Flange Wear’ (RFW) wheel profile has been developed, based on the P8 profile but with a modified flange root geometry. The Wheel Profile Damage Model has been used to calculate how the proposed RFW wheel profile could reduce wear rates and therefore increase wheelset life. This paper presents results for a typical electric multiple unit train (EMU1) running on rural and suburban routes and a higher speed variant (EMU2) running on an inter-city route. The effect of the proposed RFW profile on rail rolling contact fatigue (RCF) has also been evaluated using the Whole Life Rail Model, for the same routes. The results suggest that the proposed RFW profile does reduce flange wear compared to a P8, with larger reductions achieved on routes that are more curvaceous. For wheel turning based purely on restoring wheel profile geometry, the RFW profile could half the amount of material removed at each turning (based on turning wheels at 250,000 miles). Furthermore, the results show that the RFW profile experiences slightly less wheel RCF damage than the P8. When new, the RFW profile appears to cause slightly higher rail RCF than a new P8 (For radii 700 m < R < 1300 m); however, the results suggest that worn RFW profiles cause very similar rail RCF to that caused by worn P8 wheels.
KW - Wheelset maintenance
KW - Wheel wear and rail damage
KW - Wear modelling
KW - Rolling contact fatigue
KW - wheel wear and rail damage
KW - wear modelling
KW - rolling contact fatigue
UR - http://www.scopus.com/inward/record.url?scp=85131402850&partnerID=8YFLogxK
U2 - 10.1177/09544097221105959
DO - 10.1177/09544097221105959
M3 - Article
VL - 237
SP - 253
EP - 265
JO - Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
JF - Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
SN - 0954-4097
IS - 2
ER -