TY - JOUR
T1 - Potential applications and performance of machine learning techniques and algorithms in clinical practice
T2 - A systematic review
AU - Nwanosike, Ezekwesiri Michael
AU - Conway, Barbara R
AU - Merchant, Hamid A
AU - Hasan, Syed Shahzad
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - PURPOSE: The advent of clinically adapted machine learning algorithms can solve numerous problems ranging from disease diagnosis and prognosis to therapy recommendations. This systematic review examines the performance of machine learning (ML) algorithms and evaluates the progress made to date towards their implementation in clinical practice.METHODS: Systematic searching of databases (PubMed, MEDLINE, Scopus, Google Scholar, Cochrane Library and WHO Covid-19 database) to identify original articles published between January 2011 and October 2021. Studies reporting ML techniques in clinical practice involving humans and ML algorithms with a performance metric were considered.RESULTS: Of 873 unique articles identified, 36 studies were eligible for inclusion. The XGBoost (extreme gradient boosting) algorithm showed the highest potential for clinical applications (n = 7 studies); this was followed jointly by random forest algorithm, logistic regression, and the support vector machine, respectively (n = 5 studies). Prediction of outcomes (n = 33), in particular Inflammatory diseases (n = 7) received the most attention followed by cancer and neuropsychiatric disorders (n = 5 for each) and Covid-19 (n = 4). Thirty-three out of the thirty-six included studies passed more than 50% of the selected quality assessment criteria in the TRIPOD checklist. In contrast, none of the studies could achieve an ideal overall bias rating of 'low' based on the PROBAST checklist. In contrast, only three studies showed evidence of the deployment of ML algorithm(s) in clinical practice.CONCLUSIONS: ML is potentially a reliable tool for clinical decision support. Although advocated widely in clinical practice, work is still in progress to validate clinically adapted ML algorithms. Improving quality standards, transparency, and interpretability of ML models will further lower the barriers to acceptability.
AB - PURPOSE: The advent of clinically adapted machine learning algorithms can solve numerous problems ranging from disease diagnosis and prognosis to therapy recommendations. This systematic review examines the performance of machine learning (ML) algorithms and evaluates the progress made to date towards their implementation in clinical practice.METHODS: Systematic searching of databases (PubMed, MEDLINE, Scopus, Google Scholar, Cochrane Library and WHO Covid-19 database) to identify original articles published between January 2011 and October 2021. Studies reporting ML techniques in clinical practice involving humans and ML algorithms with a performance metric were considered.RESULTS: Of 873 unique articles identified, 36 studies were eligible for inclusion. The XGBoost (extreme gradient boosting) algorithm showed the highest potential for clinical applications (n = 7 studies); this was followed jointly by random forest algorithm, logistic regression, and the support vector machine, respectively (n = 5 studies). Prediction of outcomes (n = 33), in particular Inflammatory diseases (n = 7) received the most attention followed by cancer and neuropsychiatric disorders (n = 5 for each) and Covid-19 (n = 4). Thirty-three out of the thirty-six included studies passed more than 50% of the selected quality assessment criteria in the TRIPOD checklist. In contrast, none of the studies could achieve an ideal overall bias rating of 'low' based on the PROBAST checklist. In contrast, only three studies showed evidence of the deployment of ML algorithm(s) in clinical practice.CONCLUSIONS: ML is potentially a reliable tool for clinical decision support. Although advocated widely in clinical practice, work is still in progress to validate clinically adapted ML algorithms. Improving quality standards, transparency, and interpretability of ML models will further lower the barriers to acceptability.
KW - Machine learning
KW - Clinical studies
KW - Electronic health records (EHRs)
KW - Clinical practice
KW - Model deployment
KW - AUROC
KW - Prediction
KW - COVID-19
UR - http://www.scopus.com/inward/record.url?scp=85123813896&partnerID=8YFLogxK
U2 - 10.1016/j.ijmedinf.2021.104679
DO - 10.1016/j.ijmedinf.2021.104679
M3 - Review article
C2 - 34990939
VL - 159
JO - International Journal of Medical Informatics
JF - International Journal of Medical Informatics
SN - 1386-5056
M1 - 104679
ER -