Propagation of electrical signals by fungi

Richard Mayne, Nic Roberts, Neil Phillips, Roshan Weerasekera, Andrew Adamatzky

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Living fungal mycelium networks are proven to have properties of memristors, capacitors and various sensors. To further progress our designs in fungal electronics we need to evaluate how electrical signals can be propagated through mycelium networks. We investigate the ability of mycelium-bound composites to convey electrical signals, thereby enabling the transmission of frequency-modulated information. Mycelium networks were found to reliably transfer signals with a recoverable frequency comparable to the input, in the 100 Hz to 10 000 Hz frequency range. Mycelial adaptive responses, such as tissue repair, may result in fragile connections, however. While the mean amplitude of output signals was not reproducible among replicate experiments exposed to the same input frequency, the variance across groups was highly consistent. Our work is supported by NARX modelling through which an approximate transfer function was derived. These findings advance the state of the art of using mycelium-bound composites in analogue electronics and unconventional computing.

Original languageEnglish
Article number104933
Number of pages6
JournalBioSystems
Volume229
Early online date6 Jun 2023
DOIs
Publication statusPublished - 1 Jul 2023

Cite this