Pseudo-Spectral Methods Applied to the Mathematical Modelling of Disc Brake Squeal

C. J. Talbot, J. D. Fieldhouse, W. P. Steel, A. Crampton

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent developments in the holographic investigations of brake noise have produced a wealth of information concerning the vibrations of disc brake systems when high frequency noise (squeal) is being generated. Accurate measurements of the amplitude and phase of the 3D surface displacements of the disc rotor vibrations have been obtained. As well as finding the main frequency(s) and mode of vibration it has been possible to study features such as the in-plane components of the displacement of the disc rotor (often significantly large) and travelling waves moving round the disc at a speed dependent on the frequency and mode order of the vibrations but independent of disc rotational speed. Examining mathematical models that employ a distributed parameter approach (i.e. using a partial differential equation or systems of partial differential equations) to represent disc brake systems, this paper considers the use of numerical methods that are very efficient in computation time. Such methods - known generically as spectral and pseudo-spectral methods - can be used to produce animated solutions of the equations. Thus the parameters used in the models can be easily varied and the partial differential equation(s) solutions compared to the above observed features.

LanguageEnglish
Title of host publicationBraking 2004
Subtitle of host publicationVehicle Braking and Chassis Control
EditorsDavid Barton, Andrew Blackwood
PublisherWiley
Pages157-165
Number of pages9
ISBN (Print)9781860584640
Publication statusPublished - Oct 2004
EventInternational Conference on Vehicle Braking and Chassis Control - Leeds, United Kingdom
Duration: 7 Jul 20049 Jul 2004

Publication series

NameIMechE Event Publications

Conference

ConferenceInternational Conference on Vehicle Braking and Chassis Control
CountryUnited Kingdom
CityLeeds
Period7/07/049/07/04

Fingerprint

Brakes
Partial differential equations
Rotors
Numerical methods
Mathematical models

Cite this

Talbot, C. J., Fieldhouse, J. D., Steel, W. P., & Crampton, A. (2004). Pseudo-Spectral Methods Applied to the Mathematical Modelling of Disc Brake Squeal. In D. Barton, & A. Blackwood (Eds.), Braking 2004: Vehicle Braking and Chassis Control (pp. 157-165). (IMechE Event Publications). Wiley.
Talbot, C. J. ; Fieldhouse, J. D. ; Steel, W. P. ; Crampton, A. / Pseudo-Spectral Methods Applied to the Mathematical Modelling of Disc Brake Squeal. Braking 2004: Vehicle Braking and Chassis Control. editor / David Barton ; Andrew Blackwood. Wiley, 2004. pp. 157-165 (IMechE Event Publications).
@inproceedings{802c7a4a0c8545b684bc90f177effdef,
title = "Pseudo-Spectral Methods Applied to the Mathematical Modelling of Disc Brake Squeal",
abstract = "Recent developments in the holographic investigations of brake noise have produced a wealth of information concerning the vibrations of disc brake systems when high frequency noise (squeal) is being generated. Accurate measurements of the amplitude and phase of the 3D surface displacements of the disc rotor vibrations have been obtained. As well as finding the main frequency(s) and mode of vibration it has been possible to study features such as the in-plane components of the displacement of the disc rotor (often significantly large) and travelling waves moving round the disc at a speed dependent on the frequency and mode order of the vibrations but independent of disc rotational speed. Examining mathematical models that employ a distributed parameter approach (i.e. using a partial differential equation or systems of partial differential equations) to represent disc brake systems, this paper considers the use of numerical methods that are very efficient in computation time. Such methods - known generically as spectral and pseudo-spectral methods - can be used to produce animated solutions of the equations. Thus the parameters used in the models can be easily varied and the partial differential equation(s) solutions compared to the above observed features.",
author = "Talbot, {C. J.} and Fieldhouse, {J. D.} and Steel, {W. P.} and A. Crampton",
year = "2004",
month = "10",
language = "English",
isbn = "9781860584640",
series = "IMechE Event Publications",
publisher = "Wiley",
pages = "157--165",
editor = "David Barton and Andrew Blackwood",
booktitle = "Braking 2004",

}

Talbot, CJ, Fieldhouse, JD, Steel, WP & Crampton, A 2004, Pseudo-Spectral Methods Applied to the Mathematical Modelling of Disc Brake Squeal. in D Barton & A Blackwood (eds), Braking 2004: Vehicle Braking and Chassis Control. IMechE Event Publications, Wiley, pp. 157-165, International Conference on Vehicle Braking and Chassis Control, Leeds, United Kingdom, 7/07/04.

Pseudo-Spectral Methods Applied to the Mathematical Modelling of Disc Brake Squeal. / Talbot, C. J.; Fieldhouse, J. D.; Steel, W. P.; Crampton, A.

Braking 2004: Vehicle Braking and Chassis Control. ed. / David Barton; Andrew Blackwood. Wiley, 2004. p. 157-165 (IMechE Event Publications).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - Pseudo-Spectral Methods Applied to the Mathematical Modelling of Disc Brake Squeal

AU - Talbot, C. J.

AU - Fieldhouse, J. D.

AU - Steel, W. P.

AU - Crampton, A.

PY - 2004/10

Y1 - 2004/10

N2 - Recent developments in the holographic investigations of brake noise have produced a wealth of information concerning the vibrations of disc brake systems when high frequency noise (squeal) is being generated. Accurate measurements of the amplitude and phase of the 3D surface displacements of the disc rotor vibrations have been obtained. As well as finding the main frequency(s) and mode of vibration it has been possible to study features such as the in-plane components of the displacement of the disc rotor (often significantly large) and travelling waves moving round the disc at a speed dependent on the frequency and mode order of the vibrations but independent of disc rotational speed. Examining mathematical models that employ a distributed parameter approach (i.e. using a partial differential equation or systems of partial differential equations) to represent disc brake systems, this paper considers the use of numerical methods that are very efficient in computation time. Such methods - known generically as spectral and pseudo-spectral methods - can be used to produce animated solutions of the equations. Thus the parameters used in the models can be easily varied and the partial differential equation(s) solutions compared to the above observed features.

AB - Recent developments in the holographic investigations of brake noise have produced a wealth of information concerning the vibrations of disc brake systems when high frequency noise (squeal) is being generated. Accurate measurements of the amplitude and phase of the 3D surface displacements of the disc rotor vibrations have been obtained. As well as finding the main frequency(s) and mode of vibration it has been possible to study features such as the in-plane components of the displacement of the disc rotor (often significantly large) and travelling waves moving round the disc at a speed dependent on the frequency and mode order of the vibrations but independent of disc rotational speed. Examining mathematical models that employ a distributed parameter approach (i.e. using a partial differential equation or systems of partial differential equations) to represent disc brake systems, this paper considers the use of numerical methods that are very efficient in computation time. Such methods - known generically as spectral and pseudo-spectral methods - can be used to produce animated solutions of the equations. Thus the parameters used in the models can be easily varied and the partial differential equation(s) solutions compared to the above observed features.

UR - http://www.scopus.com/inward/record.url?scp=15344339618&partnerID=8YFLogxK

UR - https://www.wiley.com/en-gb/Braking+2004%3A+Vehicle+Braking+and+Chassis+Control-p-9781860584640

M3 - Conference contribution

SN - 9781860584640

T3 - IMechE Event Publications

SP - 157

EP - 165

BT - Braking 2004

A2 - Barton, David

A2 - Blackwood, Andrew

PB - Wiley

ER -

Talbot CJ, Fieldhouse JD, Steel WP, Crampton A. Pseudo-Spectral Methods Applied to the Mathematical Modelling of Disc Brake Squeal. In Barton D, Blackwood A, editors, Braking 2004: Vehicle Braking and Chassis Control. Wiley. 2004. p. 157-165. (IMechE Event Publications).