Pyridyl-thiazole multidentate ligands

Metal-specific recognition of a combination of ligands from a mixture

C.R. Rice, C.J. Baylies, L.P. Harding, J.C. Jeffery, R.L. Paul, M.D. Ward

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Comparison of the crystal structures of the dinuclear double helicates [M2(L1)2][ClO4]4 (M = Ni, Zn; L1 is a potentially hexadentate ligand containing a py–th–py–py–th–py sequence, where ‘py’ denotes pyridyl and ‘th’ denotes thiazolyl) illustrates how L1 can show two different coordination modes: in [Zn2(L1)2][ClO4]4 the ligands L1 are bis-bidentate chelates (via the terminal py–th fragments, with the central bipyridyl unit not coordinated) such that the metal ions are four-coordinate, whereas in [Ni2(L1)2][ClO4]4 the ligand coordinates in a more usual bis-terdentate manner such that the metal ions are six-coordinate. Reaction of Ni(II), Cu(II) or Zn(II) salts with a 1 ∶ 1 mixture of the potentially hexadentate ligands L1 and L2 (where L2 contains a phen–th–th–phen sequence, ‘phen’ denoting a 1,10-phenanthroline unit) afforded in each case a mixture of helical complexes [M2(L1)2]4+, [M2(L1)(L2)]4+ and [M2(L2)2]4+ in different proportions according to the preferences of the different metal ions for different coordination numbers, and the actual denticity of the ligand. For example the mixed-ligand complex [M2(L1)(L2)]4+ was formed to the same extent (ca. 50%) for M = Ni and M = Cu, but hardly at all for M = Zn, indicating that self–self ligand recognition operates during assembly of L1 and L2 with Zn(II) such that the homoleptic complexes [Zn2(L1)2]4+ and [Zn2(L2)2]4+ are favoured more than simple statistical considerations would suggest
Original languageEnglish
Pages (from-to)3039-3044
Number of pages6
JournalJournal of the Chemical Society. Dalton Transactions
Issue number20
DOIs
Publication statusPublished - 2001

Fingerprint

Thiazoles
Metals
Ligands
Metal ions
2,2'-Dipyridyl
Salts
Crystal structure

Cite this

@article{0c4a33ba9af6495a9e3bb9f8ec7d7bb3,
title = "Pyridyl-thiazole multidentate ligands: Metal-specific recognition of a combination of ligands from a mixture",
abstract = "Comparison of the crystal structures of the dinuclear double helicates [M2(L1)2][ClO4]4 (M = Ni, Zn; L1 is a potentially hexadentate ligand containing a py–th–py–py–th–py sequence, where ‘py’ denotes pyridyl and ‘th’ denotes thiazolyl) illustrates how L1 can show two different coordination modes: in [Zn2(L1)2][ClO4]4 the ligands L1 are bis-bidentate chelates (via the terminal py–th fragments, with the central bipyridyl unit not coordinated) such that the metal ions are four-coordinate, whereas in [Ni2(L1)2][ClO4]4 the ligand coordinates in a more usual bis-terdentate manner such that the metal ions are six-coordinate. Reaction of Ni(II), Cu(II) or Zn(II) salts with a 1 ∶ 1 mixture of the potentially hexadentate ligands L1 and L2 (where L2 contains a phen–th–th–phen sequence, ‘phen’ denoting a 1,10-phenanthroline unit) afforded in each case a mixture of helical complexes [M2(L1)2]4+, [M2(L1)(L2)]4+ and [M2(L2)2]4+ in different proportions according to the preferences of the different metal ions for different coordination numbers, and the actual denticity of the ligand. For example the mixed-ligand complex [M2(L1)(L2)]4+ was formed to the same extent (ca. 50{\%}) for M = Ni and M = Cu, but hardly at all for M = Zn, indicating that self–self ligand recognition operates during assembly of L1 and L2 with Zn(II) such that the homoleptic complexes [Zn2(L1)2]4+ and [Zn2(L2)2]4+ are favoured more than simple statistical considerations would suggest",
author = "C.R. Rice and C.J. Baylies and L.P. Harding and J.C. Jeffery and R.L. Paul and M.D. Ward",
note = "cited By 0",
year = "2001",
doi = "10.1039/B104977C",
language = "English",
pages = "3039--3044",
journal = "Journal of the Chemical Society. Dalton Transactions",
issn = "1472-7773",
publisher = "Royal Society of Chemistry",
number = "20",

}

Pyridyl-thiazole multidentate ligands : Metal-specific recognition of a combination of ligands from a mixture. / Rice, C.R.; Baylies, C.J.; Harding, L.P.; Jeffery, J.C.; Paul, R.L.; Ward, M.D.

In: Journal of the Chemical Society. Dalton Transactions, No. 20, 2001, p. 3039-3044.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Pyridyl-thiazole multidentate ligands

T2 - Metal-specific recognition of a combination of ligands from a mixture

AU - Rice, C.R.

AU - Baylies, C.J.

AU - Harding, L.P.

AU - Jeffery, J.C.

AU - Paul, R.L.

AU - Ward, M.D.

N1 - cited By 0

PY - 2001

Y1 - 2001

N2 - Comparison of the crystal structures of the dinuclear double helicates [M2(L1)2][ClO4]4 (M = Ni, Zn; L1 is a potentially hexadentate ligand containing a py–th–py–py–th–py sequence, where ‘py’ denotes pyridyl and ‘th’ denotes thiazolyl) illustrates how L1 can show two different coordination modes: in [Zn2(L1)2][ClO4]4 the ligands L1 are bis-bidentate chelates (via the terminal py–th fragments, with the central bipyridyl unit not coordinated) such that the metal ions are four-coordinate, whereas in [Ni2(L1)2][ClO4]4 the ligand coordinates in a more usual bis-terdentate manner such that the metal ions are six-coordinate. Reaction of Ni(II), Cu(II) or Zn(II) salts with a 1 ∶ 1 mixture of the potentially hexadentate ligands L1 and L2 (where L2 contains a phen–th–th–phen sequence, ‘phen’ denoting a 1,10-phenanthroline unit) afforded in each case a mixture of helical complexes [M2(L1)2]4+, [M2(L1)(L2)]4+ and [M2(L2)2]4+ in different proportions according to the preferences of the different metal ions for different coordination numbers, and the actual denticity of the ligand. For example the mixed-ligand complex [M2(L1)(L2)]4+ was formed to the same extent (ca. 50%) for M = Ni and M = Cu, but hardly at all for M = Zn, indicating that self–self ligand recognition operates during assembly of L1 and L2 with Zn(II) such that the homoleptic complexes [Zn2(L1)2]4+ and [Zn2(L2)2]4+ are favoured more than simple statistical considerations would suggest

AB - Comparison of the crystal structures of the dinuclear double helicates [M2(L1)2][ClO4]4 (M = Ni, Zn; L1 is a potentially hexadentate ligand containing a py–th–py–py–th–py sequence, where ‘py’ denotes pyridyl and ‘th’ denotes thiazolyl) illustrates how L1 can show two different coordination modes: in [Zn2(L1)2][ClO4]4 the ligands L1 are bis-bidentate chelates (via the terminal py–th fragments, with the central bipyridyl unit not coordinated) such that the metal ions are four-coordinate, whereas in [Ni2(L1)2][ClO4]4 the ligand coordinates in a more usual bis-terdentate manner such that the metal ions are six-coordinate. Reaction of Ni(II), Cu(II) or Zn(II) salts with a 1 ∶ 1 mixture of the potentially hexadentate ligands L1 and L2 (where L2 contains a phen–th–th–phen sequence, ‘phen’ denoting a 1,10-phenanthroline unit) afforded in each case a mixture of helical complexes [M2(L1)2]4+, [M2(L1)(L2)]4+ and [M2(L2)2]4+ in different proportions according to the preferences of the different metal ions for different coordination numbers, and the actual denticity of the ligand. For example the mixed-ligand complex [M2(L1)(L2)]4+ was formed to the same extent (ca. 50%) for M = Ni and M = Cu, but hardly at all for M = Zn, indicating that self–self ligand recognition operates during assembly of L1 and L2 with Zn(II) such that the homoleptic complexes [Zn2(L1)2]4+ and [Zn2(L2)2]4+ are favoured more than simple statistical considerations would suggest

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-0036168195&origin=inward&txGid=0a2eb43fc99e0ccc7eb0754062cb0d56

U2 - 10.1039/B104977C

DO - 10.1039/B104977C

M3 - Article

SP - 3039

EP - 3044

JO - Journal of the Chemical Society. Dalton Transactions

JF - Journal of the Chemical Society. Dalton Transactions

SN - 1472-7773

IS - 20

ER -