2 Citations (Scopus)

Abstract

Representation of temporal and spatial information for the Semantic Web often involves qualitative defined information (i.e., information described using natural language terms such as “before” or “overlaps”) since precise dates or coordinates are not always available. This work proposes several temporal representations for time points and intervals and spatial topological representations in ontologies by means of OWL properties and reasoning rules in SWRL. All representations are fully compliant with existing Semantic Web standards and W3C recommendations. Although qualitative representations for temporal interval and point relations and spatial topological relations exist, this is the first work proposing representations combining qualitative and quantitative information for the Semantic Web. In addition to this, several existing and proposed approaches are compared using different reasoners and experimental results are presented in detail. The proposed approach is applied to topological relations (RCC5 and RCC8) supporting both qualitative and quantitative (i.e., using coordinates) spatial relations. Experimental results illustrate that reasoning performance differs greatly between different representations and reasoners. To the best of our knowledge, this is the first such experimental evaluation of both qualitative and quantitative Semantic Web temporal and spatial representations. In addition to the above, querying performance using SPARQL is evaluated. Evaluation results demonstrate that extracting qualitative relations from quantitative representations using reasoning rules and querying qualitative relations instead of directly querying quantitative representations increases performance at query time.
Original languageEnglish
Article number1750015
Number of pages30
JournalInternational Journal on Artificial Intelligence Tools
Volume26
Issue number03
DOIs
Publication statusPublished - 23 Jun 2017

Fingerprint

Semantic Web
Ontology

Cite this

@article{c98c1f1554374505bf673f26e2e67b61,
title = "Representing Time and Space for the Semantic Web",
abstract = "Representation of temporal and spatial information for the Semantic Web often involves qualitative defined information (i.e., information described using natural language terms such as “before” or “overlaps”) since precise dates or coordinates are not always available. This work proposes several temporal representations for time points and intervals and spatial topological representations in ontologies by means of OWL properties and reasoning rules in SWRL. All representations are fully compliant with existing Semantic Web standards and W3C recommendations. Although qualitative representations for temporal interval and point relations and spatial topological relations exist, this is the first work proposing representations combining qualitative and quantitative information for the Semantic Web. In addition to this, several existing and proposed approaches are compared using different reasoners and experimental results are presented in detail. The proposed approach is applied to topological relations (RCC5 and RCC8) supporting both qualitative and quantitative (i.e., using coordinates) spatial relations. Experimental results illustrate that reasoning performance differs greatly between different representations and reasoners. To the best of our knowledge, this is the first such experimental evaluation of both qualitative and quantitative Semantic Web temporal and spatial representations. In addition to the above, querying performance using SPARQL is evaluated. Evaluation results demonstrate that extracting qualitative relations from quantitative representations using reasoning rules and querying qualitative relations instead of directly querying quantitative representations increases performance at query time.",
keywords = "Temporal representation and reasoning, Spatial representation and reasoning, Semantic Web, Rules",
author = "Sotiris Batsakis and Ilias Tachmazidis and Grigoris Antoniou",
year = "2017",
month = "6",
day = "23",
doi = "10.1142/S0218213017600156",
language = "English",
volume = "26",
journal = "International Journal on Artificial Intelligence Tools",
issn = "0218-2130",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "03",

}

TY - JOUR

T1 - Representing Time and Space for the Semantic Web

AU - Batsakis, Sotiris

AU - Tachmazidis, Ilias

AU - Antoniou, Grigoris

PY - 2017/6/23

Y1 - 2017/6/23

N2 - Representation of temporal and spatial information for the Semantic Web often involves qualitative defined information (i.e., information described using natural language terms such as “before” or “overlaps”) since precise dates or coordinates are not always available. This work proposes several temporal representations for time points and intervals and spatial topological representations in ontologies by means of OWL properties and reasoning rules in SWRL. All representations are fully compliant with existing Semantic Web standards and W3C recommendations. Although qualitative representations for temporal interval and point relations and spatial topological relations exist, this is the first work proposing representations combining qualitative and quantitative information for the Semantic Web. In addition to this, several existing and proposed approaches are compared using different reasoners and experimental results are presented in detail. The proposed approach is applied to topological relations (RCC5 and RCC8) supporting both qualitative and quantitative (i.e., using coordinates) spatial relations. Experimental results illustrate that reasoning performance differs greatly between different representations and reasoners. To the best of our knowledge, this is the first such experimental evaluation of both qualitative and quantitative Semantic Web temporal and spatial representations. In addition to the above, querying performance using SPARQL is evaluated. Evaluation results demonstrate that extracting qualitative relations from quantitative representations using reasoning rules and querying qualitative relations instead of directly querying quantitative representations increases performance at query time.

AB - Representation of temporal and spatial information for the Semantic Web often involves qualitative defined information (i.e., information described using natural language terms such as “before” or “overlaps”) since precise dates or coordinates are not always available. This work proposes several temporal representations for time points and intervals and spatial topological representations in ontologies by means of OWL properties and reasoning rules in SWRL. All representations are fully compliant with existing Semantic Web standards and W3C recommendations. Although qualitative representations for temporal interval and point relations and spatial topological relations exist, this is the first work proposing representations combining qualitative and quantitative information for the Semantic Web. In addition to this, several existing and proposed approaches are compared using different reasoners and experimental results are presented in detail. The proposed approach is applied to topological relations (RCC5 and RCC8) supporting both qualitative and quantitative (i.e., using coordinates) spatial relations. Experimental results illustrate that reasoning performance differs greatly between different representations and reasoners. To the best of our knowledge, this is the first such experimental evaluation of both qualitative and quantitative Semantic Web temporal and spatial representations. In addition to the above, querying performance using SPARQL is evaluated. Evaluation results demonstrate that extracting qualitative relations from quantitative representations using reasoning rules and querying qualitative relations instead of directly querying quantitative representations increases performance at query time.

KW - Temporal representation and reasoning

KW - Spatial representation and reasoning

KW - Semantic Web

KW - Rules

U2 - 10.1142/S0218213017600156

DO - 10.1142/S0218213017600156

M3 - Article

VL - 26

JO - International Journal on Artificial Intelligence Tools

JF - International Journal on Artificial Intelligence Tools

SN - 0218-2130

IS - 03

M1 - 1750015

ER -