Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus

Jinping Cheng, K. A.Shiral Fernando, L. Monica Veca, Ya Ping Sun, Angus I. Lamond, Yun Wah Lam, Shuk Han Cheng

Research output: Contribution to journalArticlepeer-review

141 Citations (Scopus)

Abstract

Carbon nanotubes ((NTs) have been shown to cross cell membranes and can mediate the internalization macromolecules. These characteristics have constituted CNTs as an exciting new tool for drug delivery and biological sensing. While CNTs exhibit great potential in biomedical and pharmaceutical applications, neither the cell penetration mechanism of CNTs nor the intracellular fate of the internalized CNTs are fully understood. In this study, time-lapse fluorescence microscopy was used to investigate the intracellular distribution of FITC labeled PEGylated single-walled CNTs (FITC-PEG-SWCNTs) in living cells and shown that PEGylated SWCNTs entered the nucleus of several mammalian cell lines in an energy-dependent process. The presence of FITC-PEG-SWCNTs in the cell nucleus did not cause discernible changes in the nuclear organization and had no effect on the growth kinetics and cell cycle distribution for up to 5 days. Remarkably, upon removal of the FITC-PEG-SWCNTs from the culture medium, the internalized FITC-PEG-SWCNTs rapidly moved out of the nucleus and were released from the cells. Thus, the intracellular PEGylated SWCNTs were highly dynamic and the cell penetration of PEGylated SWCNTs appeared as bidirectional. These observations suggest SWCNTs may be used as an ideal nanovector in biomedical and pharmaceutical applications.

Original languageEnglish
Pages (from-to)2085-2094
Number of pages10
JournalACS Nano
Volume2
Issue number10
Early online date30 Sep 2008
DOIs
Publication statusPublished - 28 Oct 2008
Externally publishedYes

Cite this