RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130

J E Sutcliffe, C A Cairns, A McLees, S J Allison, K Tosh, R J White

Research output: Contribution to journalArticle

49 Citations (Scopus)

Abstract

RNA polymerase III (Pol III) transcription is subject to repression by the retinoblastoma protein RB, both in vitro and in vivo (R. J. White, D. Trouche, K. Martin, S. P. Jackson, and T. Kouzarides, Nature 382:88-90, 1996). This is achieved through a direct interaction between RB and TFIIIB, a multisubunit factor that is required for the expression of all Pol III templates (C. G. C. Larminie, C. A. Cairns, R. Mital, K. Martin, T. Kouzarides, S. P. Jackson, and R. J. White, EMBO J. 16:2061-2071, 1997; W.-M. Chu, Z. Wang, R. G. Roeder, and C. W. Schmid, J. Biol. Chem. 272:14755-14761, 1997). p107 and p130 are two closely related proteins that display 30 to 35% identity with the RB polypeptide and share some of its functions. We show that p107 and p130 can both repress Pol III transcription in transient transfection assays or when added to cell extracts. Pull-down assays and immunoprecipitations using recombinant components demonstrate that a subunit of TFIIIB interacts physically with p107 and p130. In addition, endogenous TFIIIB is shown by cofractionation and coimmunoprecipitation to associate stably with both p107 and p130. Disruption of this interaction in vivo by using the E7 oncoprotein of human papillomavirus results in a marked increase in Pol III transcription. Pol III activity is also deregulated in fibroblasts derived from p107 p130 double knockout mice. We conclude that TFIIIB is targeted for repression not only by RB but also by its relatives p107 and p130.

Original languageEnglish
Pages (from-to)4255-4261
Number of pages7
JournalMolecular and Cellular Biology
Volume19
Issue number6
DOIs
Publication statusPublished - Jun 1999
Externally publishedYes

Fingerprint Dive into the research topics of 'RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130'. Together they form a unique fingerprint.

  • Cite this