Role of Surface Energy and Nano-Roughness in the Removal Efficiency of Bacterial Contamination by Nonwoven Wipes from Frequently Touched Surfaces

Nicholas W. M. Edwards, Emma L. Best, Simon Connell, Parikshit Goswami, Chris Carr, Mark Wilcox, Stephen J. Russell

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis. Plasma modification of the nano-roughness and surface energy of fibres in nonwoven wipes was found to influence the relative removal efficiencies of common bacterial pathogens from model healthcare surfaces under dynamic wiping conditions.
Original languageEnglish
Pages (from-to)197-209
Number of pages13
JournalScience and Technology of Advanced Materials
Volume18
Issue number1
Early online date1 Feb 2017
DOIs
Publication statusPublished - 14 Mar 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Role of Surface Energy and Nano-Roughness in the Removal Efficiency of Bacterial Contamination by Nonwoven Wipes from Frequently Touched Surfaces'. Together they form a unique fingerprint.

Cite this