Abstract
Sentiment analysis mines people’s opinions and attitudes regarding a certain issue from source materials. Recently, it has drawn significant attention in a number of application areas. The sentiment analysis of healthcare in general and that of users’ drug experience in particular could shed significant light on how to improve public health and make the right decisions. However, one of the major challenges in sentiment classification lies in the very large number of extracted features. Fuzzy-rough feature selection provides a means by which discrete or real-valued noisy data can be effectively reduced without human intervention. This paper proposes an implementation for automatic sentiment classification of drug reviews employing fuzzy rough feature selection. Experimental results demonstrate that the employment of fuzzy-rough feature selection can indeed significantly reduce the complexity of feature space and the classification run-time overheads while maintaining classification accuracy.
Original language | English |
---|---|
Title of host publication | 2019 IEEE International Conferences on Fuzzy Systems (FUZZ-IEEE) |
Publisher | IEEE |
Pages | 1-6 |
Number of pages | 6 |
ISBN (Electronic) | 9781538617281 |
ISBN (Print) | 9781538617298 |
DOIs | |
Publication status | Published - 10 Oct 2019 |
Event | 2019 IEEE International Conference on Fuzzy Systems - New Orleans, United States Duration: 23 Jun 2019 → 26 Jun 2019 |
Conference
Conference | 2019 IEEE International Conference on Fuzzy Systems |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 23/06/19 → 26/06/19 |