TY - JOUR
T1 - Sex-specific effects of excipients on oral drug bioavailability
AU - Mai, Yang
AU - Madla, Christine M
AU - Shao, Haibin
AU - Qin, Yujia
AU - Merchant, Hamid
AU - Murdan, Sudaxshina
AU - Basit, Abdul W
N1 - Funding Information:
The authors would like to thank the Engineering and Physical Sciences Research Council UK (EP/L01646X) and the National Natural Science Foundation of China (82003672) for their financial support towards this manuscript.
Publisher Copyright:
© 2022 The Authors
PY - 2022/12/15
Y1 - 2022/12/15
N2 - The mechanism of action of excipients eliciting sex differences in drug bioavailability is poorly understood. In this study, the excipients Cremophor RH 40 (PEG 40 hydrogenated castor oil), Poloxamer 188 (2-methyloxirane) and Tween 80 (polyoxyethylene (80) sorbitan monooleate) were screened at 0.07 – 5% concentrations for their effect on ranitidine bioavailability in male and female Wistar rats. We show that all excipient concentrations significantly increased ranitidine bioavailability in male, but not female, rats. The effect of these excipients on the intestinal efflux transporters P-glycoprotein (P-gp), breast cancer resistant protein (BCRP) and multi-drug resistant protein 2 (MRP2) were also monitored. Measured by ELISA assay, in male rats, peak reductions in intestinal P-gp protein expression occurred in the presence of 1% Cremophor RH 40 and Poloxamer 188 and 0.5% Tween 80. In contrast, no distinct changes were observed in female intestinal P-gp expression. Unlike P-gp, all excipients had a positive effect on MRP2 protein expression – albeit only in males – in a concentration-dependent manner. The excipients did not modulate intestinal BCRP protein expression in either sex. Endogenous hormones and a nuclear receptor (testosterone, oestradiol and pregnane X receptor; PXR) that are purported to regulate intestinal efflux membrane transporter expression were also quantified. In the presence of all excipients, testosterone levels significantly elevated in males, although PXR levels reduced at similar rates in both sexes. No significant effects were identified in oestradiol levels in male and female rats. It is clear that excipients are not inert and their pathway for modulating drug response is multi-dimensional and specific between sexes. This study showed that excipients increased drug bioavailability of a P-gp drug substrate due to its reductive effect on intestinal P-gp expression; we propose that this link may be due to the excipients modulating fundamental testosterone levels. Understanding the implication of excipients on intestinal physiology and hormone levels can therefore improve pharmaceutical design, clinical efficacy and instigate next generation personalised, sex-specific formulations.
AB - The mechanism of action of excipients eliciting sex differences in drug bioavailability is poorly understood. In this study, the excipients Cremophor RH 40 (PEG 40 hydrogenated castor oil), Poloxamer 188 (2-methyloxirane) and Tween 80 (polyoxyethylene (80) sorbitan monooleate) were screened at 0.07 – 5% concentrations for their effect on ranitidine bioavailability in male and female Wistar rats. We show that all excipient concentrations significantly increased ranitidine bioavailability in male, but not female, rats. The effect of these excipients on the intestinal efflux transporters P-glycoprotein (P-gp), breast cancer resistant protein (BCRP) and multi-drug resistant protein 2 (MRP2) were also monitored. Measured by ELISA assay, in male rats, peak reductions in intestinal P-gp protein expression occurred in the presence of 1% Cremophor RH 40 and Poloxamer 188 and 0.5% Tween 80. In contrast, no distinct changes were observed in female intestinal P-gp expression. Unlike P-gp, all excipients had a positive effect on MRP2 protein expression – albeit only in males – in a concentration-dependent manner. The excipients did not modulate intestinal BCRP protein expression in either sex. Endogenous hormones and a nuclear receptor (testosterone, oestradiol and pregnane X receptor; PXR) that are purported to regulate intestinal efflux membrane transporter expression were also quantified. In the presence of all excipients, testosterone levels significantly elevated in males, although PXR levels reduced at similar rates in both sexes. No significant effects were identified in oestradiol levels in male and female rats. It is clear that excipients are not inert and their pathway for modulating drug response is multi-dimensional and specific between sexes. This study showed that excipients increased drug bioavailability of a P-gp drug substrate due to its reductive effect on intestinal P-gp expression; we propose that this link may be due to the excipients modulating fundamental testosterone levels. Understanding the implication of excipients on intestinal physiology and hormone levels can therefore improve pharmaceutical design, clinical efficacy and instigate next generation personalised, sex-specific formulations.
KW - Pharmaceutical excipients
KW - Gastrointestinal tract
KW - Solubilizing agents
KW - Sex differences
KW - Bioavailability
KW - Efflux membrane transporters
KW - Testosterone
KW - Hormones
KW - Nuclear receptors
KW - Personalized medicines
KW - ABCB1
KW - ABCC2
KW - ABCG2
UR - http://www.scopus.com/inward/record.url?scp=85141269328&partnerID=8YFLogxK
U2 - 10.1016/j.ijpharm.2022.122365
DO - 10.1016/j.ijpharm.2022.122365
M3 - Article
VL - 629
JO - International Journal of Pharmaceutics
JF - International Journal of Pharmaceutics
SN - 0378-5173
M1 - 122365
ER -