Silk-Ion Jelly: a novel ion conducting polymeric material with high conductivity and excellent mechanical stability

Sohel Rana, Tania Carvalho, Raul Fangueiro, Pedro Vidinha

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

In this work, a thin, flexible and mechanically stable polymer conducting material (Silk-Ion Jelly) was developed though application of Ion Jelly on to silk fabrics. Ion Jelly was prepared through jellification of a room temperature ionic liquid, 1-butyl-3-methyl-imidazolium dicyanamide ([bmim][dca]) using gelatin and water and applied to silk fabrics using two different processes: impregnation and in-situ. Various parameters influencing ionic conductivity such as Ion Jelly composition (ratio of [bmim][dca], water and gelatin) and incorporation as well as the type of application process were thoroughly investigated. It was observed that the Ion Jelly compositions containing lower gelatin and water ratio as well as application through in-situ process at high temperature (200°C) led to considerable improvement in conductivity, mainly due to increased [bmim][dca] concentration, structural flexibility and reduced silk crystallinity. Silk-Ion Jelly prepared using optimized conditions showed excellent mechanical stability and possessed high room temperature conductivity (2.9×10-3S. cm-1), similar to [bmim][dca], and therefore, this novel ion conducting material may find potential applications in electrochemical devices due to its eco-friendly preparation route using biomaterials and green solvents.

Original languageEnglish
Pages (from-to)191-196
Number of pages6
JournalPolymers for Advanced Technologies
Volume24
Issue number2
Early online date21 Aug 2012
DOIs
Publication statusPublished - Feb 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Silk-Ion Jelly: a novel ion conducting polymeric material with high conductivity and excellent mechanical stability'. Together they form a unique fingerprint.

Cite this