Strengthening techniques tested on masonry structures struck by the Umbria-Marche earthquake of 1997-1998

M. Corradi, A. Borri, A. Vignoli

Research output: Contribution to journalArticlepeer-review

178 Citations (Scopus)


The results of experiments carried out on structures damaged in the Umbria-Marche earthquake of 1997-1998 are presented. These tests were carried out in situ on masonry panels of various dimensions, which had been strengthened with either traditional or innovative materials and techniques. Concerning traditional methods, panels injected with new limed-based mixes were tested. Other tests were realized by gluing to the wallettes sheets of monodirectional carbon fiber (CFRP) or fiber glass (GFRP) with epoxy resins. In both cases the purpose of the tests was to analyze the effectiveness of the intervention, above all as a technique of seismic-upgrading against in-plane mechanisms of collapse. The results show a significant increase in strength. The experiments carried out allowed to obtain interesting indications for their practical utilization of the studied technique. The injection technique is substantially more efficient when used as a method of repair damaged panels, confirming that a preliminary evaluation of dimension and distribution of voids is necessary before adopting this technique. The experimental work showed that the use of composite materials on double-leaf roughly cut stone masonry is more effective when conducted with other stabilization schemes. The failure of the double leaf roughly cut stone panels strengthened with composite materials resulted from the separation of the two masonry leaves. In both cases the strengthening showed remarkable benefits in terms of increase in strength, providing the masonry with greater shear strength. The increase in stiffness following the intervention, as well as its effect, was also analyzed.

Original languageEnglish
Pages (from-to)229-239
Number of pages11
JournalConstruction and Building Materials
Issue number4
Early online date14 Feb 2002
Publication statusPublished - 1 Jun 2002
Externally publishedYes

Cite this