Structural validation of nursing terminologies

Nicholas R Hardiker, Alan L Rector

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Objective: The purpose of the study is twofold: 1) to explore the applicability of combinatorial terminologies as the basis for building enumerated classifications, and 2) to investigate the usefulness of formal terminological systems for performing such classification and for assisting in the refinement of both combinatorial terminologies and enumerated classifications.

Design: A formal model of the beta version of the International Classification for Nursing Practice (ICNP) was constructed in the compositional terminological language GRAIL (GALEN Representation and Integration Language). Terms drawn from the North American Nursing Diagnosis Association Taxonomy I (NANDA taxonomy) were mapped into the model and classified automatically using GALEN technology.

Measurements: The resulting generated hierarchy was compared with the NANDA taxonomy to assess coverage and accuracy of classification.

Results: In terms of coverage, in this study ICNP was able to capture 77 percent of NANDA terms using concepts drawn from five of its eight axes. Three axes—Body Site, Topology, and Frequency—were not needed. In terms of accuracy, where hierarchic relationships existed in the generated hierarchy or the NANDA taxonomy, or both, 6 were identical, 19 existed in the generated hierarchy alone (2 of these were considered suitable for incorporation into the NANDA taxonomy and 17 were considered inaccurate), and 23 appeared in the NANDA taxonomy alone (8 of these were considered suitable for incorporation into ICNP, 9 were considered inaccurate, and 6 reflected different, equally valid perspectives). Sixty terms appeared at the top level, with no indenting, in both the generated hierarchy and the NANDA taxonomy.

Conclusions: With appropriate refinement, combinatorial terminologies such as ICNP have the potential to provide a useful foundation for representing enumerated classifications such as NANDA. Technologies such as GALEN make possible the process of building automatically enumerated classifications while providing a useful means of validating and refining both combinatorial terminologies and enumerated classifications.
LanguageEnglish
Pages212-221
Number of pages10
JournalJournal of the American Medical Informatics Association : JAMIA
Volume8
Issue number3
DOIs
Publication statusPublished - May 2001

Fingerprint

Nursing Diagnosis
Terminology
Standardized Nursing Terminology
Language
Technology

Cite this

@article{8315b31e4b7e446f8dfa7a068ad17cc7,
title = "Structural validation of nursing terminologies",
abstract = "Objective: The purpose of the study is twofold: 1) to explore the applicability of combinatorial terminologies as the basis for building enumerated classifications, and 2) to investigate the usefulness of formal terminological systems for performing such classification and for assisting in the refinement of both combinatorial terminologies and enumerated classifications.Design: A formal model of the beta version of the International Classification for Nursing Practice (ICNP) was constructed in the compositional terminological language GRAIL (GALEN Representation and Integration Language). Terms drawn from the North American Nursing Diagnosis Association Taxonomy I (NANDA taxonomy) were mapped into the model and classified automatically using GALEN technology.Measurements: The resulting generated hierarchy was compared with the NANDA taxonomy to assess coverage and accuracy of classification.Results: In terms of coverage, in this study ICNP was able to capture 77 percent of NANDA terms using concepts drawn from five of its eight axes. Three axes—Body Site, Topology, and Frequency—were not needed. In terms of accuracy, where hierarchic relationships existed in the generated hierarchy or the NANDA taxonomy, or both, 6 were identical, 19 existed in the generated hierarchy alone (2 of these were considered suitable for incorporation into the NANDA taxonomy and 17 were considered inaccurate), and 23 appeared in the NANDA taxonomy alone (8 of these were considered suitable for incorporation into ICNP, 9 were considered inaccurate, and 6 reflected different, equally valid perspectives). Sixty terms appeared at the top level, with no indenting, in both the generated hierarchy and the NANDA taxonomy.Conclusions: With appropriate refinement, combinatorial terminologies such as ICNP have the potential to provide a useful foundation for representing enumerated classifications such as NANDA. Technologies such as GALEN make possible the process of building automatically enumerated classifications while providing a useful means of validating and refining both combinatorial terminologies and enumerated classifications.",
author = "Hardiker, {Nicholas R} and Rector, {Alan L}",
year = "2001",
month = "5",
doi = "10.1136/jamia.2001.0080212",
language = "English",
volume = "8",
pages = "212--221",
journal = "Journal of the American Medical Informatics Association : JAMIA",
issn = "1067-5027",
publisher = "BMJ Group BMA House, Tavistock Square, London, WC1H 9JR",
number = "3",

}

Structural validation of nursing terminologies. / Hardiker, Nicholas R; Rector, Alan L.

In: Journal of the American Medical Informatics Association : JAMIA, Vol. 8, No. 3, 05.2001, p. 212-221.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Structural validation of nursing terminologies

AU - Hardiker, Nicholas R

AU - Rector, Alan L

PY - 2001/5

Y1 - 2001/5

N2 - Objective: The purpose of the study is twofold: 1) to explore the applicability of combinatorial terminologies as the basis for building enumerated classifications, and 2) to investigate the usefulness of formal terminological systems for performing such classification and for assisting in the refinement of both combinatorial terminologies and enumerated classifications.Design: A formal model of the beta version of the International Classification for Nursing Practice (ICNP) was constructed in the compositional terminological language GRAIL (GALEN Representation and Integration Language). Terms drawn from the North American Nursing Diagnosis Association Taxonomy I (NANDA taxonomy) were mapped into the model and classified automatically using GALEN technology.Measurements: The resulting generated hierarchy was compared with the NANDA taxonomy to assess coverage and accuracy of classification.Results: In terms of coverage, in this study ICNP was able to capture 77 percent of NANDA terms using concepts drawn from five of its eight axes. Three axes—Body Site, Topology, and Frequency—were not needed. In terms of accuracy, where hierarchic relationships existed in the generated hierarchy or the NANDA taxonomy, or both, 6 were identical, 19 existed in the generated hierarchy alone (2 of these were considered suitable for incorporation into the NANDA taxonomy and 17 were considered inaccurate), and 23 appeared in the NANDA taxonomy alone (8 of these were considered suitable for incorporation into ICNP, 9 were considered inaccurate, and 6 reflected different, equally valid perspectives). Sixty terms appeared at the top level, with no indenting, in both the generated hierarchy and the NANDA taxonomy.Conclusions: With appropriate refinement, combinatorial terminologies such as ICNP have the potential to provide a useful foundation for representing enumerated classifications such as NANDA. Technologies such as GALEN make possible the process of building automatically enumerated classifications while providing a useful means of validating and refining both combinatorial terminologies and enumerated classifications.

AB - Objective: The purpose of the study is twofold: 1) to explore the applicability of combinatorial terminologies as the basis for building enumerated classifications, and 2) to investigate the usefulness of formal terminological systems for performing such classification and for assisting in the refinement of both combinatorial terminologies and enumerated classifications.Design: A formal model of the beta version of the International Classification for Nursing Practice (ICNP) was constructed in the compositional terminological language GRAIL (GALEN Representation and Integration Language). Terms drawn from the North American Nursing Diagnosis Association Taxonomy I (NANDA taxonomy) were mapped into the model and classified automatically using GALEN technology.Measurements: The resulting generated hierarchy was compared with the NANDA taxonomy to assess coverage and accuracy of classification.Results: In terms of coverage, in this study ICNP was able to capture 77 percent of NANDA terms using concepts drawn from five of its eight axes. Three axes—Body Site, Topology, and Frequency—were not needed. In terms of accuracy, where hierarchic relationships existed in the generated hierarchy or the NANDA taxonomy, or both, 6 were identical, 19 existed in the generated hierarchy alone (2 of these were considered suitable for incorporation into the NANDA taxonomy and 17 were considered inaccurate), and 23 appeared in the NANDA taxonomy alone (8 of these were considered suitable for incorporation into ICNP, 9 were considered inaccurate, and 6 reflected different, equally valid perspectives). Sixty terms appeared at the top level, with no indenting, in both the generated hierarchy and the NANDA taxonomy.Conclusions: With appropriate refinement, combinatorial terminologies such as ICNP have the potential to provide a useful foundation for representing enumerated classifications such as NANDA. Technologies such as GALEN make possible the process of building automatically enumerated classifications while providing a useful means of validating and refining both combinatorial terminologies and enumerated classifications.

U2 - 10.1136/jamia.2001.0080212

DO - 10.1136/jamia.2001.0080212

M3 - Article

VL - 8

SP - 212

EP - 221

JO - Journal of the American Medical Informatics Association : JAMIA

T2 - Journal of the American Medical Informatics Association : JAMIA

JF - Journal of the American Medical Informatics Association : JAMIA

SN - 1067-5027

IS - 3

ER -