Structures and anion-binding properties of M4L6tetrahedral cage complexes with large central cavities

R.L. Paul, S.P. Argent, J.C. Jeffery, L.P. Harding, J.M. Lynam, M.D. Ward

Research output: Contribution to journalArticle

86 Citations (Scopus)

Abstract

Reaction of the bis-bidentate bridging ligand L3, in which two bidentate chelating 3(2-pyridyl)pyrazole units are separated by a 3,3′-biphenyl spacer, with Co(II) salts affords tetranuclear cage complexes of composition [Co4(L3)6]X8 (X = [BF4]−, [ClO4]−, [PF6]− or I−) in which four 6-coordinate Co(II) ions in an approximately tetrahedral array are connected by six bis-bidentate bridging ligands, one spanning each of the six edges of the Co4 tetrahedron. In every case, X-ray crystallography reveals that the ‘apical’ Co(II) ion has a fac tris-chelate geometry, whereas the other three Co(II) ions have mer tris-chelate geometries, resulting in (non-crystallographic) C3 symmetry for the cages; that this structure is retained in solution is confirmed by 1H NMR spectroscopy of the paramagnetic cages. In every case one of the anions is located inside the central cavity of the cage, with the remaining seven outside. We found no clear evidence for an anion-based templating effect. The cage superstructure is sufficiently large to leave gaps in the centres of the faces through which the internal and external anions can exchange. Variable-temperature 19F NMR spectroscopy was used to investigate the dynamic behaviour of the cages with X = [BF4]− and [PF6]− in MeCN solution: in both cases two separate signals, corresponding to external and internal anions, are clear at 233 K which have coalesced to a single signal at room temperature. Analysis of the linewidth of the minor signal (for the internal anion) at various temperatures below coalescence gave an activation energy for anion exchange of ca. 50 kJ mol−1 in each case, a figure which suggests that anion exchange can occur via a conformational rearrangement of the cage superstructure in solution rather than opening of the cavity by cleavage of metal–ligand bonds.
Original languageEnglish
Pages (from-to)3453-3458
Number of pages6
JournalDalton Transactions
Issue number21
DOIs
Publication statusPublished - 16 Sep 2004

Fingerprint

Anions
Ions
Nuclear magnetic resonance spectroscopy
Ligands
Geometry
X ray crystallography
Chelation
Coalescence
Linewidth
Temperature
Activation energy
Salts
Chemical analysis

Cite this

Paul, R.L. ; Argent, S.P. ; Jeffery, J.C. ; Harding, L.P. ; Lynam, J.M. ; Ward, M.D. / Structures and anion-binding properties of M4L6tetrahedral cage complexes with large central cavities. In: Dalton Transactions. 2004 ; No. 21. pp. 3453-3458.
@article{a2524b2fd7064248bfb54cdedc876417,
title = "Structures and anion-binding properties of M4L6tetrahedral cage complexes with large central cavities",
abstract = "Reaction of the bis-bidentate bridging ligand L3, in which two bidentate chelating 3(2-pyridyl)pyrazole units are separated by a 3,3′-biphenyl spacer, with Co(II) salts affords tetranuclear cage complexes of composition [Co4(L3)6]X8 (X = [BF4]−, [ClO4]−, [PF6]− or I−) in which four 6-coordinate Co(II) ions in an approximately tetrahedral array are connected by six bis-bidentate bridging ligands, one spanning each of the six edges of the Co4 tetrahedron. In every case, X-ray crystallography reveals that the ‘apical’ Co(II) ion has a fac tris-chelate geometry, whereas the other three Co(II) ions have mer tris-chelate geometries, resulting in (non-crystallographic) C3 symmetry for the cages; that this structure is retained in solution is confirmed by 1H NMR spectroscopy of the paramagnetic cages. In every case one of the anions is located inside the central cavity of the cage, with the remaining seven outside. We found no clear evidence for an anion-based templating effect. The cage superstructure is sufficiently large to leave gaps in the centres of the faces through which the internal and external anions can exchange. Variable-temperature 19F NMR spectroscopy was used to investigate the dynamic behaviour of the cages with X = [BF4]− and [PF6]− in MeCN solution: in both cases two separate signals, corresponding to external and internal anions, are clear at 233 K which have coalesced to a single signal at room temperature. Analysis of the linewidth of the minor signal (for the internal anion) at various temperatures below coalescence gave an activation energy for anion exchange of ca. 50 kJ mol−1 in each case, a figure which suggests that anion exchange can occur via a conformational rearrangement of the cage superstructure in solution rather than opening of the cavity by cleavage of metal–ligand bonds.",
author = "R.L. Paul and S.P. Argent and J.C. Jeffery and L.P. Harding and J.M. Lynam and M.D. Ward",
note = "cited By 82",
year = "2004",
month = "9",
day = "16",
doi = "10.1039/b409809a",
language = "English",
pages = "3453--3458",
journal = "Dalton Transactions",
issn = "1477-9226",
publisher = "Royal Society of Chemistry",
number = "21",

}

Structures and anion-binding properties of M4L6tetrahedral cage complexes with large central cavities. / Paul, R.L.; Argent, S.P.; Jeffery, J.C.; Harding, L.P.; Lynam, J.M.; Ward, M.D.

In: Dalton Transactions, No. 21, 16.09.2004, p. 3453-3458.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Structures and anion-binding properties of M4L6tetrahedral cage complexes with large central cavities

AU - Paul, R.L.

AU - Argent, S.P.

AU - Jeffery, J.C.

AU - Harding, L.P.

AU - Lynam, J.M.

AU - Ward, M.D.

N1 - cited By 82

PY - 2004/9/16

Y1 - 2004/9/16

N2 - Reaction of the bis-bidentate bridging ligand L3, in which two bidentate chelating 3(2-pyridyl)pyrazole units are separated by a 3,3′-biphenyl spacer, with Co(II) salts affords tetranuclear cage complexes of composition [Co4(L3)6]X8 (X = [BF4]−, [ClO4]−, [PF6]− or I−) in which four 6-coordinate Co(II) ions in an approximately tetrahedral array are connected by six bis-bidentate bridging ligands, one spanning each of the six edges of the Co4 tetrahedron. In every case, X-ray crystallography reveals that the ‘apical’ Co(II) ion has a fac tris-chelate geometry, whereas the other three Co(II) ions have mer tris-chelate geometries, resulting in (non-crystallographic) C3 symmetry for the cages; that this structure is retained in solution is confirmed by 1H NMR spectroscopy of the paramagnetic cages. In every case one of the anions is located inside the central cavity of the cage, with the remaining seven outside. We found no clear evidence for an anion-based templating effect. The cage superstructure is sufficiently large to leave gaps in the centres of the faces through which the internal and external anions can exchange. Variable-temperature 19F NMR spectroscopy was used to investigate the dynamic behaviour of the cages with X = [BF4]− and [PF6]− in MeCN solution: in both cases two separate signals, corresponding to external and internal anions, are clear at 233 K which have coalesced to a single signal at room temperature. Analysis of the linewidth of the minor signal (for the internal anion) at various temperatures below coalescence gave an activation energy for anion exchange of ca. 50 kJ mol−1 in each case, a figure which suggests that anion exchange can occur via a conformational rearrangement of the cage superstructure in solution rather than opening of the cavity by cleavage of metal–ligand bonds.

AB - Reaction of the bis-bidentate bridging ligand L3, in which two bidentate chelating 3(2-pyridyl)pyrazole units are separated by a 3,3′-biphenyl spacer, with Co(II) salts affords tetranuclear cage complexes of composition [Co4(L3)6]X8 (X = [BF4]−, [ClO4]−, [PF6]− or I−) in which four 6-coordinate Co(II) ions in an approximately tetrahedral array are connected by six bis-bidentate bridging ligands, one spanning each of the six edges of the Co4 tetrahedron. In every case, X-ray crystallography reveals that the ‘apical’ Co(II) ion has a fac tris-chelate geometry, whereas the other three Co(II) ions have mer tris-chelate geometries, resulting in (non-crystallographic) C3 symmetry for the cages; that this structure is retained in solution is confirmed by 1H NMR spectroscopy of the paramagnetic cages. In every case one of the anions is located inside the central cavity of the cage, with the remaining seven outside. We found no clear evidence for an anion-based templating effect. The cage superstructure is sufficiently large to leave gaps in the centres of the faces through which the internal and external anions can exchange. Variable-temperature 19F NMR spectroscopy was used to investigate the dynamic behaviour of the cages with X = [BF4]− and [PF6]− in MeCN solution: in both cases two separate signals, corresponding to external and internal anions, are clear at 233 K which have coalesced to a single signal at room temperature. Analysis of the linewidth of the minor signal (for the internal anion) at various temperatures below coalescence gave an activation energy for anion exchange of ca. 50 kJ mol−1 in each case, a figure which suggests that anion exchange can occur via a conformational rearrangement of the cage superstructure in solution rather than opening of the cavity by cleavage of metal–ligand bonds.

U2 - 10.1039/b409809a

DO - 10.1039/b409809a

M3 - Article

SP - 3453

EP - 3458

JO - Dalton Transactions

JF - Dalton Transactions

SN - 1477-9226

IS - 21

ER -