TY - JOUR
T1 - Study of dissolution hydrodynamic conditions versus drug release from hypromellose matrices
T2 - The influence of agitation sequence
AU - Asare-Addo, Kofi
AU - Levina, Marina
AU - Rajabi-Siahboomi, Ali R.
AU - Nokhodchi, Ali
PY - 2010/12/1
Y1 - 2010/12/1
N2 - In this article, the influence of agitation in descending and ascending sequences as a systematic method development process for potentially discriminating fed and fasted states and evaluation of its effects on the drug release from swelling gel-forming hydrophilic matrix tablets were investigated. Theophylline extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus at 5, 10, 15, 20, 25 and 30 dips per minute (dpm). Agitation had a profound effect on the drug release from the HPMC K100LV matrices. Drug release in pH 1.2 changed from about 40% at 5dpm to about 80% at 30dpm over a 60min period alone. The matrices containing HPMC K4M, K15M and K100M however were not significantly affected by the agitation rate. The similarity factor f2 was calculated using drug release at 10dpm as a reference. The ascending agitations of 5-30dpm and the descending order of agitation 30-5dpm were also evaluated. Anomalous transport was the only kinetic of release for the K4M, K15M and K100M tablet matrices. The lower viscous polymer of K100LV had some matrices exhibiting Fickian diffusion as its kinetics of release. The use of systematic change of agitation method may indicate potential fed and fasted effects on drug release from hydrophilic matrices.
AB - In this article, the influence of agitation in descending and ascending sequences as a systematic method development process for potentially discriminating fed and fasted states and evaluation of its effects on the drug release from swelling gel-forming hydrophilic matrix tablets were investigated. Theophylline extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus at 5, 10, 15, 20, 25 and 30 dips per minute (dpm). Agitation had a profound effect on the drug release from the HPMC K100LV matrices. Drug release in pH 1.2 changed from about 40% at 5dpm to about 80% at 30dpm over a 60min period alone. The matrices containing HPMC K4M, K15M and K100M however were not significantly affected by the agitation rate. The similarity factor f2 was calculated using drug release at 10dpm as a reference. The ascending agitations of 5-30dpm and the descending order of agitation 30-5dpm were also evaluated. Anomalous transport was the only kinetic of release for the K4M, K15M and K100M tablet matrices. The lower viscous polymer of K100LV had some matrices exhibiting Fickian diffusion as its kinetics of release. The use of systematic change of agitation method may indicate potential fed and fasted effects on drug release from hydrophilic matrices.
KW - Agitation rate
KW - Apparatus III
KW - Bio-Dis
KW - Dissolution testing
KW - Drug release mechanism
KW - Extended release
KW - HPMC matrix tablets
UR - http://www.scopus.com/inward/record.url?scp=77956649427&partnerID=8YFLogxK
UR - https://www.journals.elsevier.com/colloids-and-surfaces-b-biointerfaces
U2 - 10.1016/j.colsurfb.2010.07.040
DO - 10.1016/j.colsurfb.2010.07.040
M3 - Article
C2 - 20729043
AN - SCOPUS:77956649427
VL - 81
SP - 452
EP - 460
JO - Colloids and Surfaces B: Biointerfaces
JF - Colloids and Surfaces B: Biointerfaces
SN - 0927-7765
IS - 2
ER -