Supply chain risk management and artificial intelligence: state of the art and future research directions

George Baryannis, Sahar Validi, Samir Dani, Grigoris Antoniou

Research output: Contribution to journalArticlepeer-review

538 Citations (Scopus)

Abstract

Supply Chain Risk Management (SCRM) encompasses a wide variety of strategies aiming to identify, assess, mitigate and monitor unexpected events or conditions which might have an impact, mostly adverse, on any part of a supply chain. SCRM strategies often depend on rapid and adaptive decision making based on potentially large, multidimensional data sources. These characteristics make SCRM a suitable application area for Artificial Intelligence (AI) techniques. The aim of this paper is to provide a comprehensive review of supply chain literature that addresses problems relevant to SCRM using approaches that fall within the AI spectrum. To that end, an investigation is conducted on the various definitions and classifications of supply chain risk and related notions such as uncertainty. Then, a mapping study is performed to categorise existing literature according to the AI methodology used, ranging from mathematical programming to Machine Learning and Big Data Analytics, and the specific SCRM task they address (identification, assessment or response). Finally, a comprehensive analysis of each category is provided to identify missing aspects and unexplored areas and propose directions for future research at the confluence of SCRM and AI.
Original languageEnglish
Pages (from-to)2179-2202
Number of pages24
JournalInternational Journal of Production Research
Volume57
Issue number7
Early online date6 Oct 2018
DOIs
Publication statusPublished - 3 Apr 2019

Fingerprint

Dive into the research topics of 'Supply chain risk management and artificial intelligence: state of the art and future research directions'. Together they form a unique fingerprint.

Cite this