The development of a sorghum bran-based biorefining process to convert sorghum bran into value added products

Oyenike Makanjuola, Darren Greetham, Xiaoyan Zou, Chenyu Du

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Sorghum bran, a starch rich food processing waste, was investigated for the production of glucoamylase in submerged fungal fermentation using Aspergillus awamori. The fermentation parameters, such as cultivation time, substrate concentration, pH, temperature, nitrogen source, mineral source and the medium loading ratio were investigated. The glucoamylase activity was improved from 1.90 U/mL in an initial test, to 19.3 U/mL at 10% (w/v) substrate concentration, pH 6.0, medium loading ratio of 200 mL in 500 mL shaking flask, with the addition of 2.5 g/L yeast extract and essential minerals. Fermentation using 2 L bioreactors under the optimum conditions resulted in a glucoamylase activity of 23.5 U/mL at 72 h, while further increase in sorghum bran concentration to 12.5% (w/v) gave an improved gluco-amylase activity of 37.6 U/mL at 115 h. The crude glucoamylase solution was used for the enzymatic hydrolysis of the sorghum bran. A sorghum bran hydrolysis carried out at 200 rpm, 55 °C for 48 h at a substrate loading ratio of 80 g/L resulted in 11.7 g/L glucose, similar to the results obtained using commercial glucoamylase. Large-scale sorghum bran hydrolysis in 2 L bioreactors using crude glucoamylase solution resulted in a glucose concentration of 38.7 g/L from 200 g/L sorghum bran, corresponding to 94.1% of the theoretical hydrolysis yield.

Original languageEnglish
Article number279
JournalFoods
Volume8
Issue number8
DOIs
Publication statusPublished - 24 Jul 2019

Fingerprint

Dive into the research topics of 'The development of a sorghum bran-based biorefining process to convert sorghum bran into value added products'. Together they form a unique fingerprint.

Cite this