The Practical Pomeron for High Energy Proton Collimation

R. B. Appleby, Roger Barlow, J. G. Molson, M. Serluca, A. Toader

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC.
Original languageEnglish
Article number520
Number of pages23
JournalEuropean Physical Journal C
Volume76
Early online date26 Sep 2016
DOIs
Publication statusPublished - Oct 2016

Fingerprint Dive into the research topics of 'The Practical Pomeron for High Energy Proton Collimation'. Together they form a unique fingerprint.

  • Cite this

    Appleby, R. B., Barlow, R., Molson, J. G., Serluca, M., & Toader, A. (2016). The Practical Pomeron for High Energy Proton Collimation. European Physical Journal C, 76, [520]. https://doi.org/10.1140/epjc/s10052-016-4363-7