The Transient Pod Method Based on Minimum Error of Bifurcation Parameter

Kuan Lu, Haopeng Zhang, Kangyu Zhang, Yulin Jin, Shibo Zhao, Chao Fu, Yushu Chen

Research output: Contribution to journalArticlepeer-review

Abstract

An invariable order reduction model cannot be obtained by the adaptive proper orthogonal decomposition (POD) method in parametric domain, there exists uniqueness of the model with different conditions. In this paper, the transient POD method based on the minimum error of bifurcation parameter is proposed and the order reduction conditions in the parametric domain are pro-vided. The order reduction model equivalence of optimal sampling length is discussed. The POD method was applied for order reduction of a high-dimensional rotor system supported by sliding bearings in a certain speed range. The effects of speed, initial conditions, sampling length, and mode number on parametric domain order reduction are discussed. The existence of sampling length was verified, and two-and three-degrees-of-freedom (DOF) invariable order reduction models were obtained by proper orthogonal modes (POM) on the basis of optimal sampling length.

Original languageEnglish
Article number392
Number of pages21
JournalMathematics
Volume9
Issue number4
DOIs
Publication statusPublished - 2 Feb 2021

Fingerprint Dive into the research topics of 'The Transient Pod Method Based on Minimum Error of Bifurcation Parameter'. Together they form a unique fingerprint.

Cite this