The use of a quantitative structure-activity relationship (QSAR) model to predict GABA-A receptor binding of newly emerging benzodiazepines

Laura Waters, Kieran R. Manchester, Peter D. Maskell, Caroline Haegeman, Shozeb Haider

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

The illicit market for new psychoactive substances is forever expanding. Benzodiazepines and their derivatives are one of a number of groups of these substances and thus far their number has grown year upon year. For both forensic and clinical purposes it is important to be able to rapidly understand these emerging substances. However as a consequence of the illicit nature of these compounds, there is a deficiency in the pharmacological data available for these 'new' benzodiazepines. In order to further understand the pharmacology of 'new' benzodiazepines we utilised a quantitative structure-activity relationship (QSAR) approach. A set of 69 benzodiazepine-based compounds was analysed to develop a QSAR training set with respect to published binding values to GABAA receptors. The QSAR model returned an R2 value of 0.90. The most influential factors were found to be the positioning of two H-bond acceptors, two aromatic rings and a hydrophobic group. A test set of nine random compounds was then selected for internal validation to determine the predictive ability of the model and gave an R2 value of 0.86 when comparing the binding values with their experimental data. The QSAR model was then used to predict the binding for 22 benzodiazepines that are classed as new psychoactive substances. This model will allow rapid prediction of the binding activity of emerging benzodiazepines in a rapid and economic way, compared with lengthy and expensive in vitro/in vivo analysis. This will enable forensic chemists and toxicologists to better understand both recently developed compounds and prediction of substances likely to emerge in the future.

Original languageEnglish
Pages (from-to)219-225
Number of pages7
JournalScience and Justice
Volume58
Issue number3
Early online date8 Jan 2018
DOIs
Publication statusPublished - 1 May 2018

Fingerprint

Quantitative Structure-Activity Relationship
GABA-A Receptors
Benzodiazepines
Pharmacology
Economics

Cite this

Waters, Laura ; Manchester, Kieran R. ; Maskell, Peter D. ; Haegeman, Caroline ; Haider, Shozeb. / The use of a quantitative structure-activity relationship (QSAR) model to predict GABA-A receptor binding of newly emerging benzodiazepines. In: Science and Justice. 2018 ; Vol. 58, No. 3. pp. 219-225.
@article{1651fe6306f04c9da9934e39a3bd1175,
title = "The use of a quantitative structure-activity relationship (QSAR) model to predict GABA-A receptor binding of newly emerging benzodiazepines",
abstract = "The illicit market for new psychoactive substances is forever expanding. Benzodiazepines and their derivatives are one of a number of groups of these substances and thus far their number has grown year upon year. For both forensic and clinical purposes it is important to be able to rapidly understand these emerging substances. However as a consequence of the illicit nature of these compounds, there is a deficiency in the pharmacological data available for these 'new' benzodiazepines. In order to further understand the pharmacology of 'new' benzodiazepines we utilised a quantitative structure-activity relationship (QSAR) approach. A set of 69 benzodiazepine-based compounds was analysed to develop a QSAR training set with respect to published binding values to GABAA receptors. The QSAR model returned an R2 value of 0.90. The most influential factors were found to be the positioning of two H-bond acceptors, two aromatic rings and a hydrophobic group. A test set of nine random compounds was then selected for internal validation to determine the predictive ability of the model and gave an R2 value of 0.86 when comparing the binding values with their experimental data. The QSAR model was then used to predict the binding for 22 benzodiazepines that are classed as new psychoactive substances. This model will allow rapid prediction of the binding activity of emerging benzodiazepines in a rapid and economic way, compared with lengthy and expensive in vitro/in vivo analysis. This will enable forensic chemists and toxicologists to better understand both recently developed compounds and prediction of substances likely to emerge in the future.",
keywords = "Benzodiazepines, Biological activity, GABA receptor, New psychoactive substances, Prediction, QSAR",
author = "Laura Waters and Manchester, {Kieran R.} and Maskell, {Peter D.} and Caroline Haegeman and Shozeb Haider",
year = "2018",
month = "5",
day = "1",
doi = "10.1016/j.scijus.2017.12.004",
language = "English",
volume = "58",
pages = "219--225",
journal = "Science and Justice - Journal of the Forensic Science Society",
issn = "1355-0306",
publisher = "Forensic Science Society",
number = "3",

}

The use of a quantitative structure-activity relationship (QSAR) model to predict GABA-A receptor binding of newly emerging benzodiazepines. / Waters, Laura; Manchester, Kieran R.; Maskell, Peter D.; Haegeman, Caroline; Haider, Shozeb.

In: Science and Justice, Vol. 58, No. 3, 01.05.2018, p. 219-225.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The use of a quantitative structure-activity relationship (QSAR) model to predict GABA-A receptor binding of newly emerging benzodiazepines

AU - Waters, Laura

AU - Manchester, Kieran R.

AU - Maskell, Peter D.

AU - Haegeman, Caroline

AU - Haider, Shozeb

PY - 2018/5/1

Y1 - 2018/5/1

N2 - The illicit market for new psychoactive substances is forever expanding. Benzodiazepines and their derivatives are one of a number of groups of these substances and thus far their number has grown year upon year. For both forensic and clinical purposes it is important to be able to rapidly understand these emerging substances. However as a consequence of the illicit nature of these compounds, there is a deficiency in the pharmacological data available for these 'new' benzodiazepines. In order to further understand the pharmacology of 'new' benzodiazepines we utilised a quantitative structure-activity relationship (QSAR) approach. A set of 69 benzodiazepine-based compounds was analysed to develop a QSAR training set with respect to published binding values to GABAA receptors. The QSAR model returned an R2 value of 0.90. The most influential factors were found to be the positioning of two H-bond acceptors, two aromatic rings and a hydrophobic group. A test set of nine random compounds was then selected for internal validation to determine the predictive ability of the model and gave an R2 value of 0.86 when comparing the binding values with their experimental data. The QSAR model was then used to predict the binding for 22 benzodiazepines that are classed as new psychoactive substances. This model will allow rapid prediction of the binding activity of emerging benzodiazepines in a rapid and economic way, compared with lengthy and expensive in vitro/in vivo analysis. This will enable forensic chemists and toxicologists to better understand both recently developed compounds and prediction of substances likely to emerge in the future.

AB - The illicit market for new psychoactive substances is forever expanding. Benzodiazepines and their derivatives are one of a number of groups of these substances and thus far their number has grown year upon year. For both forensic and clinical purposes it is important to be able to rapidly understand these emerging substances. However as a consequence of the illicit nature of these compounds, there is a deficiency in the pharmacological data available for these 'new' benzodiazepines. In order to further understand the pharmacology of 'new' benzodiazepines we utilised a quantitative structure-activity relationship (QSAR) approach. A set of 69 benzodiazepine-based compounds was analysed to develop a QSAR training set with respect to published binding values to GABAA receptors. The QSAR model returned an R2 value of 0.90. The most influential factors were found to be the positioning of two H-bond acceptors, two aromatic rings and a hydrophobic group. A test set of nine random compounds was then selected for internal validation to determine the predictive ability of the model and gave an R2 value of 0.86 when comparing the binding values with their experimental data. The QSAR model was then used to predict the binding for 22 benzodiazepines that are classed as new psychoactive substances. This model will allow rapid prediction of the binding activity of emerging benzodiazepines in a rapid and economic way, compared with lengthy and expensive in vitro/in vivo analysis. This will enable forensic chemists and toxicologists to better understand both recently developed compounds and prediction of substances likely to emerge in the future.

KW - Benzodiazepines

KW - Biological activity

KW - GABA receptor

KW - New psychoactive substances

KW - Prediction

KW - QSAR

UR - http://www.scopus.com/inward/record.url?scp=85040115785&partnerID=8YFLogxK

U2 - 10.1016/j.scijus.2017.12.004

DO - 10.1016/j.scijus.2017.12.004

M3 - Article

VL - 58

SP - 219

EP - 225

JO - Science and Justice - Journal of the Forensic Science Society

JF - Science and Justice - Journal of the Forensic Science Society

SN - 1355-0306

IS - 3

ER -