Thermal effects in InGaAs/AlAsSb quantum-cascade lasers

C. A. Evans, V. D. Jovanović, D. Indjin, Z. Ikonić, P. Harrison

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

A quantum-cascade laser (QCL) thermal model is presented. On the basis of a finite-difference approach, the model is used in conjunction with a self-consistent carrier transport model to calculate the temperature distribution in a near-infrared InGaAs/AlAsSb QCL. The presented model is used to investigate the effects of driving conditions and device geometries on the active-region temperature, which has a major influence on the device performance. A buried heterostructure combined with epilayer-down mounting is found to offer the best performance compared with alternative structures and has thermal time constants up to eight times smaller. The presented model provides a valuable tool for understanding the thermal dynamics inside a QCL and will help to improve operating temperatures.

Original languageEnglish
Pages (from-to)287-292
Number of pages6
JournalIEE Proceedings: Optoelectronics
Volume153
Issue number6
DOIs
Publication statusPublished - 1 Dec 2006
Externally publishedYes

Fingerprint

Dive into the research topics of 'Thermal effects in InGaAs/AlAsSb quantum-cascade lasers'. Together they form a unique fingerprint.

Cite this