Thermogravimetric, infrared and mass-spectroscopic analysis of the desorption of methanol, propan-1-ol, propan-2-ol and 2-methylpropan- 2-ol from montmorillonite

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

The desorption of methanol (MeOH), propan-1-ol (n-PrOH), propan-2-ol (i-PrOH) and 2-methylpropan-2-ol (t-BuOH) from Na+-, Ca2+-, Al3+-, Cr3+- and Fe3+-exchanged montmorillonite has been studied using variable temperature infrared (IR) spectroscopy and thermogravimetric analysis (TGA). Alcohol-saturated trivalent cation (M3+) exchanged samples exhibit maxima in the derivative thermograms at 20 and 110°C (MeOH), 30 and 160°C (n-PrOH), 20 and 110°C (i-PrOH) and 20, 55 and 80°C (t-BuOH). Alcohol-saturated Na+ and Ca2+-exchanged montmorillonite samples exhibit maxima at higher temperatures in the i-PrOH (20 and 140°C) and t-BuOH (30, 90 and 110°C) desorption profiles but at the same temperatures for MeOH and n-PrOH. Mass spectroscopic analysis of the vapours desorbed from the alcohol-treated samples show that the low-temperature maxima in the alcohol desorption from the M3+-exchanged clays are due to unchanged alcohol, whilst those occurring at 80°C (t-BuOH), 110°C (i-PrOH) and 160°C (n-PrOH) are due, in the main, to alkene produced from the intramolecular dehydration of the respective alcohol. Changes in the IR spectra of the adsorbed alcohols occur at temperatures which are in accord with the mass spectral data. No mass spectral evidence was found for the formation of dialkylethers via the competing intermolecular process but dimerisation and oligomerisation of t-BuOH were observed.

Original languageEnglish
Pages (from-to)123-137
Number of pages15
JournalClay Minerals
Volume28
Issue number1
DOIs
Publication statusPublished - Mar 1993
Externally publishedYes

Fingerprint

Bentonite
Spectroscopic analysis
montmorillonite
Methanol
methanol
alcohol
Desorption
desorption
Alcohols
Infrared radiation
Oligomerization
Dimerization
alkene
Alkenes
Dehydration
dehydration
Thermogravimetric analysis
analysis
Cations
Infrared spectroscopy

Cite this

@article{2bcadfcdd43848c280d89a95dc697813,
title = "Thermogravimetric, infrared and mass-spectroscopic analysis of the desorption of methanol, propan-1-ol, propan-2-ol and 2-methylpropan- 2-ol from montmorillonite",
abstract = "The desorption of methanol (MeOH), propan-1-ol (n-PrOH), propan-2-ol (i-PrOH) and 2-methylpropan-2-ol (t-BuOH) from Na+-, Ca2+-, Al3+-, Cr3+- and Fe3+-exchanged montmorillonite has been studied using variable temperature infrared (IR) spectroscopy and thermogravimetric analysis (TGA). Alcohol-saturated trivalent cation (M3+) exchanged samples exhibit maxima in the derivative thermograms at 20 and 110°C (MeOH), 30 and 160°C (n-PrOH), 20 and 110°C (i-PrOH) and 20, 55 and 80°C (t-BuOH). Alcohol-saturated Na+ and Ca2+-exchanged montmorillonite samples exhibit maxima at higher temperatures in the i-PrOH (20 and 140°C) and t-BuOH (30, 90 and 110°C) desorption profiles but at the same temperatures for MeOH and n-PrOH. Mass spectroscopic analysis of the vapours desorbed from the alcohol-treated samples show that the low-temperature maxima in the alcohol desorption from the M3+-exchanged clays are due to unchanged alcohol, whilst those occurring at 80°C (t-BuOH), 110°C (i-PrOH) and 160°C (n-PrOH) are due, in the main, to alkene produced from the intramolecular dehydration of the respective alcohol. Changes in the IR spectra of the adsorbed alcohols occur at temperatures which are in accord with the mass spectral data. No mass spectral evidence was found for the formation of dialkylethers via the competing intermolecular process but dimerisation and oligomerisation of t-BuOH were observed.",
author = "C. Breen and Flynn, {J. J.} and Parkes, {G. M.B.}",
year = "1993",
month = "3",
doi = "10.1180/claymin.1993.028.1.11",
language = "English",
volume = "28",
pages = "123--137",
journal = "Clay Minerals",
issn = "0009-8558",
publisher = "Mineralogical Society",
number = "1",

}

TY - JOUR

T1 - Thermogravimetric, infrared and mass-spectroscopic analysis of the desorption of methanol, propan-1-ol, propan-2-ol and 2-methylpropan- 2-ol from montmorillonite

AU - Breen, C.

AU - Flynn, J. J.

AU - Parkes, G. M.B.

PY - 1993/3

Y1 - 1993/3

N2 - The desorption of methanol (MeOH), propan-1-ol (n-PrOH), propan-2-ol (i-PrOH) and 2-methylpropan-2-ol (t-BuOH) from Na+-, Ca2+-, Al3+-, Cr3+- and Fe3+-exchanged montmorillonite has been studied using variable temperature infrared (IR) spectroscopy and thermogravimetric analysis (TGA). Alcohol-saturated trivalent cation (M3+) exchanged samples exhibit maxima in the derivative thermograms at 20 and 110°C (MeOH), 30 and 160°C (n-PrOH), 20 and 110°C (i-PrOH) and 20, 55 and 80°C (t-BuOH). Alcohol-saturated Na+ and Ca2+-exchanged montmorillonite samples exhibit maxima at higher temperatures in the i-PrOH (20 and 140°C) and t-BuOH (30, 90 and 110°C) desorption profiles but at the same temperatures for MeOH and n-PrOH. Mass spectroscopic analysis of the vapours desorbed from the alcohol-treated samples show that the low-temperature maxima in the alcohol desorption from the M3+-exchanged clays are due to unchanged alcohol, whilst those occurring at 80°C (t-BuOH), 110°C (i-PrOH) and 160°C (n-PrOH) are due, in the main, to alkene produced from the intramolecular dehydration of the respective alcohol. Changes in the IR spectra of the adsorbed alcohols occur at temperatures which are in accord with the mass spectral data. No mass spectral evidence was found for the formation of dialkylethers via the competing intermolecular process but dimerisation and oligomerisation of t-BuOH were observed.

AB - The desorption of methanol (MeOH), propan-1-ol (n-PrOH), propan-2-ol (i-PrOH) and 2-methylpropan-2-ol (t-BuOH) from Na+-, Ca2+-, Al3+-, Cr3+- and Fe3+-exchanged montmorillonite has been studied using variable temperature infrared (IR) spectroscopy and thermogravimetric analysis (TGA). Alcohol-saturated trivalent cation (M3+) exchanged samples exhibit maxima in the derivative thermograms at 20 and 110°C (MeOH), 30 and 160°C (n-PrOH), 20 and 110°C (i-PrOH) and 20, 55 and 80°C (t-BuOH). Alcohol-saturated Na+ and Ca2+-exchanged montmorillonite samples exhibit maxima at higher temperatures in the i-PrOH (20 and 140°C) and t-BuOH (30, 90 and 110°C) desorption profiles but at the same temperatures for MeOH and n-PrOH. Mass spectroscopic analysis of the vapours desorbed from the alcohol-treated samples show that the low-temperature maxima in the alcohol desorption from the M3+-exchanged clays are due to unchanged alcohol, whilst those occurring at 80°C (t-BuOH), 110°C (i-PrOH) and 160°C (n-PrOH) are due, in the main, to alkene produced from the intramolecular dehydration of the respective alcohol. Changes in the IR spectra of the adsorbed alcohols occur at temperatures which are in accord with the mass spectral data. No mass spectral evidence was found for the formation of dialkylethers via the competing intermolecular process but dimerisation and oligomerisation of t-BuOH were observed.

UR - http://www.scopus.com/inward/record.url?scp=0027510855&partnerID=8YFLogxK

U2 - 10.1180/claymin.1993.028.1.11

DO - 10.1180/claymin.1993.028.1.11

M3 - Article

VL - 28

SP - 123

EP - 137

JO - Clay Minerals

JF - Clay Minerals

SN - 0009-8558

IS - 1

ER -