Abstract
Wind flow within blowouts is extremely complex as streamline compression, expansion and reversal may occur over and around a single landform. As a result high resolution temporal and spatial measurements are required during a range of incident wind conditions to resolve near surface airflow patterns and turbulent structures. This study examined three-dimensional airflow within a coastal dune trough–bowl blowout using 15 ultrasonic anemometers (UAs) and a high resolution computational fluid dynamics model.
Measured total wind speed and vertical wind speed behaved consistently through 5 Beaufort wind scales ranging from ‘fresh breeze’ to ‘strong gale’, increasing relative to incident wind speed, whilst wind direction at each UA did not alter. Due to the agreement of modelled and measured data, ‘hurricane’ (37 m s−1) incident winds were also simulated and were consistent with modelled and measured wind direction at lower wind speeds. Modelled wind turbulence data was not compared with measured as only average conditions were simulated. However, the standard deviation of measured wind direction remained constant at each anemometer throughout the range of incident wind speeds, whilst the standard deviation of wind speed and turbulent kinetic energy increased relative to incident wind speed.
This paper demonstrates that wind flow behaviour within blowouts throughout this range of wind speeds is governed by topography and is relative to, but does not change structurally with incident wind speed. As a result the extent of streamline compression, expansion, steering and reversal remain constant.
Measured total wind speed and vertical wind speed behaved consistently through 5 Beaufort wind scales ranging from ‘fresh breeze’ to ‘strong gale’, increasing relative to incident wind speed, whilst wind direction at each UA did not alter. Due to the agreement of modelled and measured data, ‘hurricane’ (37 m s−1) incident winds were also simulated and were consistent with modelled and measured wind direction at lower wind speeds. Modelled wind turbulence data was not compared with measured as only average conditions were simulated. However, the standard deviation of measured wind direction remained constant at each anemometer throughout the range of incident wind speeds, whilst the standard deviation of wind speed and turbulent kinetic energy increased relative to incident wind speed.
This paper demonstrates that wind flow behaviour within blowouts throughout this range of wind speeds is governed by topography and is relative to, but does not change structurally with incident wind speed. As a result the extent of streamline compression, expansion, steering and reversal remain constant.
Original language | English |
---|---|
Pages (from-to) | 111-123 |
Number of pages | 13 |
Journal | Aeolian Research |
Volume | 9 |
Early online date | 11 Apr 2013 |
DOIs | |
Publication status | Published - 1 Jun 2013 |
Externally published | Yes |