TY - JOUR
T1 - Three-Dimensional Surface Characterization for Orthopaedic Joint Prostheses
AU - Jiang, X. Q.
AU - Blunt, L.
AU - Stout, K. J.
PY - 1999/1/1
Y1 - 1999/1/1
N2 - This study attempts to investigate a range of 'better' methods for the characterization of the three-dimensional (3D) surface topography of orthopaedic joint prostheses. In this paper, a new characterization tool for the comprehensive identification and evaluation of functional features of these surface topographies is presented. For identification, the surface topography is investigated in a space-scale space, by employing wavelet analysis. The roughness, waviness and form involved in surface topography are consequently separated and recovered respectively. The multiscalar topographical features are identified and captured. The errors caused as a consequence of three-dimensional measurement methods can be reduced. After identification, the three-dimensional surface assessment techniques previously reported by Stout and co-workers are used for the quantitative evaluation of various surface roughness features of the orthopaedic joint prostheses. Moreover, the functional properties, such as bearing area, material volume and void volume which are significantly effected by large peaks, pits and scratches are studied and the location of isolated peaks, pits and scratches in the different scales is also clearly characterized. In this work, measurement of the femoral heads and acetabular cups is carried out to demonstrate the applicability of the characterization technique for the three-dimensional surface topography of orthopaedic joint prostheses.
AB - This study attempts to investigate a range of 'better' methods for the characterization of the three-dimensional (3D) surface topography of orthopaedic joint prostheses. In this paper, a new characterization tool for the comprehensive identification and evaluation of functional features of these surface topographies is presented. For identification, the surface topography is investigated in a space-scale space, by employing wavelet analysis. The roughness, waviness and form involved in surface topography are consequently separated and recovered respectively. The multiscalar topographical features are identified and captured. The errors caused as a consequence of three-dimensional measurement methods can be reduced. After identification, the three-dimensional surface assessment techniques previously reported by Stout and co-workers are used for the quantitative evaluation of various surface roughness features of the orthopaedic joint prostheses. Moreover, the functional properties, such as bearing area, material volume and void volume which are significantly effected by large peaks, pits and scratches are studied and the location of isolated peaks, pits and scratches in the different scales is also clearly characterized. In this work, measurement of the femoral heads and acetabular cups is carried out to demonstrate the applicability of the characterization technique for the three-dimensional surface topography of orthopaedic joint prostheses.
KW - Characterization Techniques
KW - Orthopaedic Joint Prostheses
KW - Three-Dimensional Surface Topography
KW - Wavelet Analysis
UR - http://www.scopus.com/inward/record.url?scp=0032618979&partnerID=8YFLogxK
U2 - 10.1243/0954411991534807
DO - 10.1243/0954411991534807
M3 - Article
C2 - 10087904
AN - SCOPUS:0032618979
VL - 213
SP - 49
EP - 68
JO - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
JF - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
SN - 0954-4119
IS - 1
ER -