Abstract
Spike-based brain-inspired systems have shown an immense capability to achieve internal stability, widely referred to as homeostasis. This ability enrols them as the best candidate for next-generation computational neuroscience as they bridge the gap between neuroscience and machine learning. Spiking Neural Networks (SNN), a third generation Artificial Neural Network (ANN), which operates using discrete events of spikes, contributes to a category of biologically-realistic models of neurons to carry out computations. Spiking Astrocyte-Neuron Networks (SANN) have a characteristic attribute homologous to brain self-repair. Although SNNs are more powerful in theory than 2nd generation ANNs, they are not widely in use as their implementations on normal hardware are computationally-intensive. On the contrary, due to the capability of modern hardware such as FPGAs, which operates in MHz and GHz range, facilitates real-time and faster-than-real-time simulations of SNNs. In this work, we overcome the computational overhead of the SNNs using the benefits of real-time hardware computations, utilizing time-multiplexing to design a Self-rePairing spiking Astrocyte Neural NEtwoRk (SPANNER) chip, generic to users` choice of task, emphasizing fault-tolerance, targeting safety-critical applications. We demonstrate the proposed methodology on a SANN system implemented on Xilinx Artix-7 FPGA. The proposed architecture has minimal hardware footprints, power dissipation profile and real-time computational capability, enhancing its usability in constrained applications.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018 |
Editors | Suresh Sundaram |
Publisher | IEEE |
Pages | 1076-1083 |
Number of pages | 8 |
Volume | 3 |
ISBN (Electronic) | 9781538692769 |
ISBN (Print) | 9781538692776 |
DOIs | |
Publication status | Published - 31 Jan 2019 |
Externally published | Yes |
Event | IEEE Symposium on Computational Intelligence - Bengaluru, India Duration: 18 Nov 2018 → 21 Nov 2018 http://ieee-ssci2018.org/ (Link to Conference Website) |
Conference
Conference | IEEE Symposium on Computational Intelligence |
---|---|
Abbreviated title | IEEE-SSCI 2018 |
Country/Territory | India |
City | Bengaluru |
Period | 18/11/18 → 21/11/18 |
Internet address |
|