Towards a trajectory planning concept

Augmenting path planning methods by considering speed limit constraints

Lukáš Chrpa, Hugh Osborne

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Trajectory planning is an essential part of systems controlling autonomous entities such as vehicles or robots. It requires not only finding spatial curves but also that dynamic properties of the vehicles (such as speed limits for certain maneuvers) must be followed. In this paper, we present an approach for augmenting existing path planning methods to support basic dynamic constraints, concretely speed limit constraints. We apply this approach to the well known Astate-of-the-art ThetaLazy Thetapath planning algorithms. We use a concept of trajectory planning based on a modular architecture in which spatial and dynamic parts can be easily implemented. This concept allows dynamic aspects to be processed during planning. Existing systems based on a similar concept usually add dynamics (velocity) into spatial curves in a post-processing step which might be inappropriate when the curves do not follow the dynamics. Many existing trajectory planning approaches, especially in mobile robotics, encode dynamic aspects directly in the representation (e.g. in the form of regular lattices) which requires a precise knowledge of the environmental and dynamic properties of particular autonomous entities making designing and implementing such trajectory planning approaches quite difficult. The concept of trajectory planning we implemented might not be as precise but the modular architecture makes the design and implementation easier because we can use (modified) well known path planning methods and define models of dynamics of autonomous entities separately. This seems to be appropriate for simulations used in feasibility studies for some complex autonomous systems or in computer games etc. Our basic implementation of the augmented A, ThetaLazy Thetaalgorithms is also experimentally evaluated. We compare (i) the augmented and basic A, ThetaLazy Thetaalgorithms and (ii) optimizing of augmented ThetaLazy Thetafor distance (the trajectory length) and duration (time needed to move through the trajectory).

Original languageEnglish
Pages (from-to)243-270
Number of pages28
JournalJournal of Intelligent and Robotic Systems: Theory and Applications
Volume75
Issue number2
DOIs
Publication statusPublished - 2014

Fingerprint

Motion planning
Trajectories
Planning
Computer games
Robotics
Robots
Processing

Cite this

@article{f7a3685d6cbf416b9d4851844bcae5c1,
title = "Towards a trajectory planning concept: Augmenting path planning methods by considering speed limit constraints",
abstract = "Trajectory planning is an essential part of systems controlling autonomous entities such as vehicles or robots. It requires not only finding spatial curves but also that dynamic properties of the vehicles (such as speed limits for certain maneuvers) must be followed. In this paper, we present an approach for augmenting existing path planning methods to support basic dynamic constraints, concretely speed limit constraints. We apply this approach to the well known Astate-of-the-art ThetaLazy Thetapath planning algorithms. We use a concept of trajectory planning based on a modular architecture in which spatial and dynamic parts can be easily implemented. This concept allows dynamic aspects to be processed during planning. Existing systems based on a similar concept usually add dynamics (velocity) into spatial curves in a post-processing step which might be inappropriate when the curves do not follow the dynamics. Many existing trajectory planning approaches, especially in mobile robotics, encode dynamic aspects directly in the representation (e.g. in the form of regular lattices) which requires a precise knowledge of the environmental and dynamic properties of particular autonomous entities making designing and implementing such trajectory planning approaches quite difficult. The concept of trajectory planning we implemented might not be as precise but the modular architecture makes the design and implementation easier because we can use (modified) well known path planning methods and define models of dynamics of autonomous entities separately. This seems to be appropriate for simulations used in feasibility studies for some complex autonomous systems or in computer games etc. Our basic implementation of the augmented A, ThetaLazy Thetaalgorithms is also experimentally evaluated. We compare (i) the augmented and basic A, ThetaLazy Thetaalgorithms and (ii) optimizing of augmented ThetaLazy Thetafor distance (the trajectory length) and duration (time needed to move through the trajectory).",
keywords = "A, Path planning, Speed limit constraints, Theta, Trajectory planning",
author = "Luk{\'a}š Chrpa and Hugh Osborne",
year = "2014",
doi = "10.1007/s10846-013-9886-7",
language = "English",
volume = "75",
pages = "243--270",
journal = "Journal of Intelligent and Robotic Systems: Theory and Applications",
issn = "0921-0296",
publisher = "Springer Netherlands",
number = "2",

}

Towards a trajectory planning concept : Augmenting path planning methods by considering speed limit constraints. / Chrpa, Lukáš; Osborne, Hugh.

In: Journal of Intelligent and Robotic Systems: Theory and Applications, Vol. 75, No. 2, 2014, p. 243-270.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Towards a trajectory planning concept

T2 - Augmenting path planning methods by considering speed limit constraints

AU - Chrpa, Lukáš

AU - Osborne, Hugh

PY - 2014

Y1 - 2014

N2 - Trajectory planning is an essential part of systems controlling autonomous entities such as vehicles or robots. It requires not only finding spatial curves but also that dynamic properties of the vehicles (such as speed limits for certain maneuvers) must be followed. In this paper, we present an approach for augmenting existing path planning methods to support basic dynamic constraints, concretely speed limit constraints. We apply this approach to the well known Astate-of-the-art ThetaLazy Thetapath planning algorithms. We use a concept of trajectory planning based on a modular architecture in which spatial and dynamic parts can be easily implemented. This concept allows dynamic aspects to be processed during planning. Existing systems based on a similar concept usually add dynamics (velocity) into spatial curves in a post-processing step which might be inappropriate when the curves do not follow the dynamics. Many existing trajectory planning approaches, especially in mobile robotics, encode dynamic aspects directly in the representation (e.g. in the form of regular lattices) which requires a precise knowledge of the environmental and dynamic properties of particular autonomous entities making designing and implementing such trajectory planning approaches quite difficult. The concept of trajectory planning we implemented might not be as precise but the modular architecture makes the design and implementation easier because we can use (modified) well known path planning methods and define models of dynamics of autonomous entities separately. This seems to be appropriate for simulations used in feasibility studies for some complex autonomous systems or in computer games etc. Our basic implementation of the augmented A, ThetaLazy Thetaalgorithms is also experimentally evaluated. We compare (i) the augmented and basic A, ThetaLazy Thetaalgorithms and (ii) optimizing of augmented ThetaLazy Thetafor distance (the trajectory length) and duration (time needed to move through the trajectory).

AB - Trajectory planning is an essential part of systems controlling autonomous entities such as vehicles or robots. It requires not only finding spatial curves but also that dynamic properties of the vehicles (such as speed limits for certain maneuvers) must be followed. In this paper, we present an approach for augmenting existing path planning methods to support basic dynamic constraints, concretely speed limit constraints. We apply this approach to the well known Astate-of-the-art ThetaLazy Thetapath planning algorithms. We use a concept of trajectory planning based on a modular architecture in which spatial and dynamic parts can be easily implemented. This concept allows dynamic aspects to be processed during planning. Existing systems based on a similar concept usually add dynamics (velocity) into spatial curves in a post-processing step which might be inappropriate when the curves do not follow the dynamics. Many existing trajectory planning approaches, especially in mobile robotics, encode dynamic aspects directly in the representation (e.g. in the form of regular lattices) which requires a precise knowledge of the environmental and dynamic properties of particular autonomous entities making designing and implementing such trajectory planning approaches quite difficult. The concept of trajectory planning we implemented might not be as precise but the modular architecture makes the design and implementation easier because we can use (modified) well known path planning methods and define models of dynamics of autonomous entities separately. This seems to be appropriate for simulations used in feasibility studies for some complex autonomous systems or in computer games etc. Our basic implementation of the augmented A, ThetaLazy Thetaalgorithms is also experimentally evaluated. We compare (i) the augmented and basic A, ThetaLazy Thetaalgorithms and (ii) optimizing of augmented ThetaLazy Thetafor distance (the trajectory length) and duration (time needed to move through the trajectory).

KW - A

KW - Path planning

KW - Speed limit constraints

KW - Theta

KW - Trajectory planning

UR - http://www.scopus.com/inward/record.url?scp=84905562337&partnerID=8YFLogxK

U2 - 10.1007/s10846-013-9886-7

DO - 10.1007/s10846-013-9886-7

M3 - Article

VL - 75

SP - 243

EP - 270

JO - Journal of Intelligent and Robotic Systems: Theory and Applications

JF - Journal of Intelligent and Robotic Systems: Theory and Applications

SN - 0921-0296

IS - 2

ER -