TY - JOUR
T1 - Towards a trajectory planning concept
T2 - Augmenting path planning methods by considering speed limit constraints
AU - Chrpa, Lukáš
AU - Osborne, Hugh
PY - 2014/8/1
Y1 - 2014/8/1
N2 - Trajectory planning is an essential part of systems controlling autonomous entities such as vehicles or robots. It requires not only finding spatial curves but also that dynamic properties of the vehicles (such as speed limits for certain maneuvers) must be followed. In this paper, we present an approach for augmenting existing path planning methods to support basic dynamic constraints, concretely speed limit constraints. We apply this approach to the well known Astate-of-the-art ThetaLazy Thetapath planning algorithms. We use a concept of trajectory planning based on a modular architecture in which spatial and dynamic parts can be easily implemented. This concept allows dynamic aspects to be processed during planning. Existing systems based on a similar concept usually add dynamics (velocity) into spatial curves in a post-processing step which might be inappropriate when the curves do not follow the dynamics. Many existing trajectory planning approaches, especially in mobile robotics, encode dynamic aspects directly in the representation (e.g. in the form of regular lattices) which requires a precise knowledge of the environmental and dynamic properties of particular autonomous entities making designing and implementing such trajectory planning approaches quite difficult. The concept of trajectory planning we implemented might not be as precise but the modular architecture makes the design and implementation easier because we can use (modified) well known path planning methods and define models of dynamics of autonomous entities separately. This seems to be appropriate for simulations used in feasibility studies for some complex autonomous systems or in computer games etc. Our basic implementation of the augmented A, ThetaLazy Thetaalgorithms is also experimentally evaluated. We compare (i) the augmented and basic A, ThetaLazy Thetaalgorithms and (ii) optimizing of augmented ThetaLazy Thetafor distance (the trajectory length) and duration (time needed to move through the trajectory).
AB - Trajectory planning is an essential part of systems controlling autonomous entities such as vehicles or robots. It requires not only finding spatial curves but also that dynamic properties of the vehicles (such as speed limits for certain maneuvers) must be followed. In this paper, we present an approach for augmenting existing path planning methods to support basic dynamic constraints, concretely speed limit constraints. We apply this approach to the well known Astate-of-the-art ThetaLazy Thetapath planning algorithms. We use a concept of trajectory planning based on a modular architecture in which spatial and dynamic parts can be easily implemented. This concept allows dynamic aspects to be processed during planning. Existing systems based on a similar concept usually add dynamics (velocity) into spatial curves in a post-processing step which might be inappropriate when the curves do not follow the dynamics. Many existing trajectory planning approaches, especially in mobile robotics, encode dynamic aspects directly in the representation (e.g. in the form of regular lattices) which requires a precise knowledge of the environmental and dynamic properties of particular autonomous entities making designing and implementing such trajectory planning approaches quite difficult. The concept of trajectory planning we implemented might not be as precise but the modular architecture makes the design and implementation easier because we can use (modified) well known path planning methods and define models of dynamics of autonomous entities separately. This seems to be appropriate for simulations used in feasibility studies for some complex autonomous systems or in computer games etc. Our basic implementation of the augmented A, ThetaLazy Thetaalgorithms is also experimentally evaluated. We compare (i) the augmented and basic A, ThetaLazy Thetaalgorithms and (ii) optimizing of augmented ThetaLazy Thetafor distance (the trajectory length) and duration (time needed to move through the trajectory).
KW - A
KW - Path planning
KW - Speed limit constraints
KW - Theta
KW - Trajectory planning
UR - http://www.scopus.com/inward/record.url?scp=84905562337&partnerID=8YFLogxK
U2 - 10.1007/s10846-013-9886-7
DO - 10.1007/s10846-013-9886-7
M3 - Article
AN - SCOPUS:84905562337
VL - 75
SP - 243
EP - 270
JO - Journal of Intelligent and Robotic Systems: Theory and Applications
JF - Journal of Intelligent and Robotic Systems: Theory and Applications
SN - 0921-0296
IS - 2
ER -