Abstract
A novel meta-material has been designed and implemented into a rotor blade to enhance aerodynamic efficiency by achieving a passive twist during rotation. The twist is induced by bend-twist coupling exhibited in the meta-material, which is created to possess anisotropic elastic properties at the bulk level. A concept design of a rectangular blade spar is proposed where the metamaterial is used as the core material to induce twist. Using finite element analysis(FEA) we demonstrate how the bend-twist property of the blade spar is governed by cell geometries of the core material. The twist is activated by a lagwise bending moment generated from a movable mass at the blade tip due to off-centre centrifugal forces. The relationship between the twist, mass location and rotational speed has been explored. Moreover, it was found that the bend-twist property achieved by the proposed blade spar is more effective compared to that of an anisotropic thin-walled composite beam.
Original language | English |
---|---|
Article number | 112855 |
Number of pages | 10 |
Journal | Composite Structures |
Volume | 254 |
Early online date | 26 Aug 2020 |
DOIs | |
Publication status | Published - 15 Dec 2020 |