Uncertainty evaluation associated with versatile automated gauging influenced by process variations through design of experiments approach

Moschos Papananias, Simon Fletcher, Andrew Peter Longstaff, Alistair Barrie Forbes

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Recent advances in versatile automated gauging have enabled accurate geometric tolerance assessment on the shop floor. This paper is concerned with the uncertainty evaluation associated with comparative coordinate measurement using the design of experiments (DOE) approach. It employs the Renishaw Equator which is a software-driven comparative gauge based on the traditional comparison of production parts to a reference master part. The fixturing requirement of each production part to the master part is approximately ±1 mm for a comparison process with an uncertainty of ±2 μm. Therefore, a number of experimental designs are applied with the main focus on the influence of part misalignment from rotation between master and measure coordinate frames on the comparator measurement uncertainty. Other factors considered include measurement mode mainly in scanning and touch-trigger probing (TTP) and alignment procedure used to establish the coordinate reference frame (CRF) with respect to the number of contact points used for each geometric feature measured. The measurement uncertainty analysis of the comparator technique used by the Equator gauge commences with a simple measurement task using a gauge block to evaluate the three-dimensional (3D) uncertainty of length comparative coordinate measurement influenced by an offset by tilt in one direction (two-dimensional angular misalignment). Then, a specific manufactured measurement object is employed so that the comparator measurement uncertainty can be assessed for numerous measurement tasks within a satisfactory range of the working volume of the versatile gauge. Furthermore, in the second case study, different types of part misalignment including both 2D and 3D angular misalignments are applied. The time required for managing the re-mastering process is also examined. A task specific uncertainty evaluation is completed using DOE. Also, investigating the effects of process variations that might be experienced by such a device in workshop environments. It is shown that the comparator measurement uncertainties obtained by all the experiments agree with system features under specified conditions. It is also demonstrated that when the specified conditions are exceeded, the comparator measurement uncertainty is associated with the measurement task, the measurement strategy used, the feature size, and the magnitude and direction of offset angles in relation to the reference axes of the machine. In particular, departures from the specified part fixturing requirement of Equator have a more significant effect on the uncertainty of length measurement in comparator mode and a less significant effect on the diameter measurement uncertainty for the specific Equator and test conditions.
Original languageEnglish
Pages (from-to)440-455
Number of pages6
JournalPrecision Engineering
Volume49
Early online date11 Apr 2017
DOIs
Publication statusPublished - Jul 2017

Fingerprint

Gaging
Design of experiments
Gages
Uncertainty
Gage blocks
Uncertainty analysis
Point contacts

Cite this

@article{bb4fe67a34a74ab39768b6ae9fd047e1,
title = "Uncertainty evaluation associated with versatile automated gauging influenced by process variations through design of experiments approach",
abstract = "Recent advances in versatile automated gauging have enabled accurate geometric tolerance assessment on the shop floor. This paper is concerned with the uncertainty evaluation associated with comparative coordinate measurement using the design of experiments (DOE) approach. It employs the Renishaw Equator which is a software-driven comparative gauge based on the traditional comparison of production parts to a reference master part. The fixturing requirement of each production part to the master part is approximately ±1 mm for a comparison process with an uncertainty of ±2 μm. Therefore, a number of experimental designs are applied with the main focus on the influence of part misalignment from rotation between master and measure coordinate frames on the comparator measurement uncertainty. Other factors considered include measurement mode mainly in scanning and touch-trigger probing (TTP) and alignment procedure used to establish the coordinate reference frame (CRF) with respect to the number of contact points used for each geometric feature measured. The measurement uncertainty analysis of the comparator technique used by the Equator gauge commences with a simple measurement task using a gauge block to evaluate the three-dimensional (3D) uncertainty of length comparative coordinate measurement influenced by an offset by tilt in one direction (two-dimensional angular misalignment). Then, a specific manufactured measurement object is employed so that the comparator measurement uncertainty can be assessed for numerous measurement tasks within a satisfactory range of the working volume of the versatile gauge. Furthermore, in the second case study, different types of part misalignment including both 2D and 3D angular misalignments are applied. The time required for managing the re-mastering process is also examined. A task specific uncertainty evaluation is completed using DOE. Also, investigating the effects of process variations that might be experienced by such a device in workshop environments. It is shown that the comparator measurement uncertainties obtained by all the experiments agree with system features under specified conditions. It is also demonstrated that when the specified conditions are exceeded, the comparator measurement uncertainty is associated with the measurement task, the measurement strategy used, the feature size, and the magnitude and direction of offset angles in relation to the reference axes of the machine. In particular, departures from the specified part fixturing requirement of Equator have a more significant effect on the uncertainty of length measurement in comparator mode and a less significant effect on the diameter measurement uncertainty for the specific Equator and test conditions.",
keywords = "Versatile automated gauging, Measurement uncertainty, Angular misalignment, Design of experiments, Scanning, Touch-trigger probing",
author = "Moschos Papananias and Simon Fletcher and Longstaff, {Andrew Peter} and Forbes, {Alistair Barrie}",
year = "2017",
month = "7",
doi = "10.1016/j.precisioneng.2017.04.007",
language = "English",
volume = "49",
pages = "440--455",
journal = "Precision Engineering",
issn = "0141-6359",
publisher = "Elsevier Inc.",

}

Uncertainty evaluation associated with versatile automated gauging influenced by process variations through design of experiments approach. / Papananias, Moschos; Fletcher, Simon; Longstaff, Andrew Peter; Forbes, Alistair Barrie.

In: Precision Engineering, Vol. 49, 07.2017, p. 440-455.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Uncertainty evaluation associated with versatile automated gauging influenced by process variations through design of experiments approach

AU - Papananias, Moschos

AU - Fletcher, Simon

AU - Longstaff, Andrew Peter

AU - Forbes, Alistair Barrie

PY - 2017/7

Y1 - 2017/7

N2 - Recent advances in versatile automated gauging have enabled accurate geometric tolerance assessment on the shop floor. This paper is concerned with the uncertainty evaluation associated with comparative coordinate measurement using the design of experiments (DOE) approach. It employs the Renishaw Equator which is a software-driven comparative gauge based on the traditional comparison of production parts to a reference master part. The fixturing requirement of each production part to the master part is approximately ±1 mm for a comparison process with an uncertainty of ±2 μm. Therefore, a number of experimental designs are applied with the main focus on the influence of part misalignment from rotation between master and measure coordinate frames on the comparator measurement uncertainty. Other factors considered include measurement mode mainly in scanning and touch-trigger probing (TTP) and alignment procedure used to establish the coordinate reference frame (CRF) with respect to the number of contact points used for each geometric feature measured. The measurement uncertainty analysis of the comparator technique used by the Equator gauge commences with a simple measurement task using a gauge block to evaluate the three-dimensional (3D) uncertainty of length comparative coordinate measurement influenced by an offset by tilt in one direction (two-dimensional angular misalignment). Then, a specific manufactured measurement object is employed so that the comparator measurement uncertainty can be assessed for numerous measurement tasks within a satisfactory range of the working volume of the versatile gauge. Furthermore, in the second case study, different types of part misalignment including both 2D and 3D angular misalignments are applied. The time required for managing the re-mastering process is also examined. A task specific uncertainty evaluation is completed using DOE. Also, investigating the effects of process variations that might be experienced by such a device in workshop environments. It is shown that the comparator measurement uncertainties obtained by all the experiments agree with system features under specified conditions. It is also demonstrated that when the specified conditions are exceeded, the comparator measurement uncertainty is associated with the measurement task, the measurement strategy used, the feature size, and the magnitude and direction of offset angles in relation to the reference axes of the machine. In particular, departures from the specified part fixturing requirement of Equator have a more significant effect on the uncertainty of length measurement in comparator mode and a less significant effect on the diameter measurement uncertainty for the specific Equator and test conditions.

AB - Recent advances in versatile automated gauging have enabled accurate geometric tolerance assessment on the shop floor. This paper is concerned with the uncertainty evaluation associated with comparative coordinate measurement using the design of experiments (DOE) approach. It employs the Renishaw Equator which is a software-driven comparative gauge based on the traditional comparison of production parts to a reference master part. The fixturing requirement of each production part to the master part is approximately ±1 mm for a comparison process with an uncertainty of ±2 μm. Therefore, a number of experimental designs are applied with the main focus on the influence of part misalignment from rotation between master and measure coordinate frames on the comparator measurement uncertainty. Other factors considered include measurement mode mainly in scanning and touch-trigger probing (TTP) and alignment procedure used to establish the coordinate reference frame (CRF) with respect to the number of contact points used for each geometric feature measured. The measurement uncertainty analysis of the comparator technique used by the Equator gauge commences with a simple measurement task using a gauge block to evaluate the three-dimensional (3D) uncertainty of length comparative coordinate measurement influenced by an offset by tilt in one direction (two-dimensional angular misalignment). Then, a specific manufactured measurement object is employed so that the comparator measurement uncertainty can be assessed for numerous measurement tasks within a satisfactory range of the working volume of the versatile gauge. Furthermore, in the second case study, different types of part misalignment including both 2D and 3D angular misalignments are applied. The time required for managing the re-mastering process is also examined. A task specific uncertainty evaluation is completed using DOE. Also, investigating the effects of process variations that might be experienced by such a device in workshop environments. It is shown that the comparator measurement uncertainties obtained by all the experiments agree with system features under specified conditions. It is also demonstrated that when the specified conditions are exceeded, the comparator measurement uncertainty is associated with the measurement task, the measurement strategy used, the feature size, and the magnitude and direction of offset angles in relation to the reference axes of the machine. In particular, departures from the specified part fixturing requirement of Equator have a more significant effect on the uncertainty of length measurement in comparator mode and a less significant effect on the diameter measurement uncertainty for the specific Equator and test conditions.

KW - Versatile automated gauging

KW - Measurement uncertainty

KW - Angular misalignment

KW - Design of experiments

KW - Scanning

KW - Touch-trigger probing

U2 - 10.1016/j.precisioneng.2017.04.007

DO - 10.1016/j.precisioneng.2017.04.007

M3 - Article

VL - 49

SP - 440

EP - 455

JO - Precision Engineering

JF - Precision Engineering

SN - 0141-6359

ER -