Use of railway wheel wear and damage prediction tools to improve maintenance efficiency through the use of economic tyre turning

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

This paper investigates the wear rate and pattern for wheels turned with thin flanges using economic tyre turning. Economic tyre turning refers to the process of turning wheels to a profile that has the same tread shape but a thinner flange than the design case profile, allowing less material to be removed from the wheel diameter during re-profiling. Modern wheel lathes are typically capable of turning such profiles but the GB railway group standards do not currently permit their use. The paper demonstrates how the wheel profile damage model (WPDM) can be used, with a good degree of accuracy, to predict both the magnitude of wheel wear and the worn profile shape of the design and economic tyre turning re-profiled wheels for service mileages exceeding 100,000 miles. The WPDM simulations were run for two typical electric multiple units (one suburban and one intercity train fleet) and a two-axle freight wagon. Additionally, it discusses the calibration methodology used to adjust the wear coefficients contained within the Archard wear model to improve the accuracy of the WPDM simulation results for specific routes and vehicle types. Furthermore, this paper presents the findings of a trial of economic tyre turning on a fleet of intercity trains. The analysis is extended to predict the effect of using economic tyre turning on rail rolling contact fatigue for typical routes and operating conditions using a series of vehicle dynamic simulations. The analysis considers new 56E1 and 60E2 rails together with a selection of worn wheel. The research provides valuable evidence to support a future change to the standards which will allow train operators/maintainers to implement economic tyre turning policies.
Original languageEnglish
Pages (from-to)103-117
Number of pages15
JournalProceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
Volume233
Issue number1
Early online date10 Jul 2018
DOIs
Publication statusPublished - 1 Jan 2019

Fingerprint

Dive into the research topics of 'Use of railway wheel wear and damage prediction tools to improve maintenance efficiency through the use of economic tyre turning'. Together they form a unique fingerprint.

Cite this