Vibration analysis of cantilever FG-CNTRC trapezoidal plates

Mohammad Hossein Majidi, Mohammad Azadi, Hamidreza Fahham

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, a numerical solution is presented for free vibration analysis of cantilever functionally graded carbon nanotube-reinforced trapezoidal plates. The plate is modeled based on the first-order shear deformation theory, effective mechanical properties are estimated according to extended rule of mixture, and the set of governing equations and boundary conditions are derived using Hamilton’s principle. Generalized differential quadrature method is employed, and natural frequencies and corresponding mode shapes are derived numerically. Convergence and accuracy of the solution are confirmed, and effect of various parameters on the natural frequencies is investigated including geometrical characteristics, volume fraction and distribution of carbon nanotubes. Because of similarity of the studied model with the wing, tail and fin of aircrafts and missiles, results of this paper can be useful in design and analysis of aeronautic vehicles in the near future. It is worth mentioning that results of this paper may serve as benchmarks for future studies.

Original languageEnglish
Article number118
Number of pages18
JournalJournal of the Brazilian Society of Mechanical Sciences and Engineering
Volume42
Issue number3
Early online date7 Feb 2020
DOIs
Publication statusPublished - 1 Mar 2020
Externally publishedYes

Fingerprint Dive into the research topics of 'Vibration analysis of cantilever FG-CNTRC trapezoidal plates'. Together they form a unique fingerprint.

Cite this