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Lukáš Chrpaa,b,∗ and Mauro Vallatic and Thomas Leo McCluskeyc

aDepartment of Computer Science, Czech Technical University in Prague, Prague Czech

Republic
bDepartment of Theoretical Computer Science and Mathematical Logic, Charles University in

Prague, Prague Czech Republic
cDepartment of Informatics, University of Huddersfield, Huddersfield, UK

(Received 00 Month 20XX; final version received 00 Month 20XX)

In the field of Automated Planning, a central research focus is on domain-independent plan-
ning engines which accept planning tasks (domain models and problem descriptions) in a
standard language such as PDDL, and return solution plans. Performance of planning en-
gines can be improved by gathering additional heuristic knowledge about specific planning
domain models/tasks (e.g. control rules) which can guide the search for a solution plan.
However, there is no convention on the syntax or semantics of such additional knowledge,
and thus domain-independent planning engines cannot benefit from it. Using techniques to
transform the given planning task to incorporate additional heuristic knowledge, however,
while keeping to the same input language, can overcome this issue to some degree.

In this paper we present outer entanglements, that are relations between planning operators
and predicates whose instances are present in the initial state or the goal. These relations are
used to restrict “entangled” operator instances such that only “entangled” predicate instances
present in the initial state or the goal are considered (e.g., picking up packages only at their
initial locations).

The contribution of this paper is to provide an in depth analysis and evaluation of outer
entanglements, including theoretical aspects such as complexity results. Also, it includes
an extensive empirical study using competition benchmarks and state-of-the-art planning
engines illustrating the effectiveness of using Outer Entanglements as heuristics for improving
the efficiency of planning algorithms.

Keywords: Classical Planning; Outer Entanglements; Domain Reformulation; State Space
Pruning

1. Introduction

Automated planning is an important research area of Artificial Intelligence (AI) where
an autonomous entity (e.g. a robot) reasons about the way it can act in order to achieve
its goals. AI planning has therefore a great potential for applications where a certain
level of autonomy is required such as in the Deep Space 1 mission (Bernard et al., 2000).

Automated Planning involves combinatorial search that, roughly speaking, examines
numerous combinations of action sequences in order to find a solution plan (an action
sequence transforming the environment from the initial state to some goal state). In
the last few decades, there has been a great deal of activity in the research commu-
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nity designing planning techniques and planning engines. The International Planning
Competition (IPC)1 has been staged regularly since 1998 and is increasingly attracting
the attention of the AI planning community (Vallati et al., 2015). Thanks to the IPC
we have many advanced planning engines, and PDDL (Ghallab et al., 1998) that is a
standardized language family for describing planning tasks and standard benchmarks for
measuring planners’ performance. Along with those planning engines, many novel plan-
ning techniques have been proposed, such as heuristic search (Bonet and Geffner, 1999),
translating planning tasks into SAT (Kautz and Selman, 1992) just to mention a few.

The performance of planning engines can be improved by extracting and exploiting
Domain Control Knowledge (DCK), i.e., additional knowledge about planning tasks,
for instance, in the form of Control Rules (Minton and Carbonell, 1987) or Decision
Trees (de la Rosa et al., 2011). DCK, roughly speaking, provides a guidance for planning
engines, so they can find solution plans more quickly. The usefulness of learning and
exploiting DCK in planning has been demonstrated by Yoon et al. (Yoon et al., 2008)
whose approach that learns DCK from relaxed plans (obtained by solving planning tasks
while omitting negative effects of actions) won the best learner award at IPC 2008.
However, these types of knowledge are often tied to specific planning engines using a
planner-specific language (e.g. as with TALPlanner (Kvarnström and Doherty, 2000)) or
a convention on extending the input language to take advantage of them, so that planning
engines can maintain some level of domain-independence. On the contrary, knowledge
which can be directly encoded into the standard definition language (such as PDDL) is
planner-independent, so a standard planning engine can straightforwardly exploit it. For
example, action-centric DCK can be compiled into PDDL (Baier et al., 2007). The best
known specific type of DCK, macro-operators (“macros”), which encapsulate sequences
of operators, can be encoded as normal planning operators, so they can be exploited in
a planner-independent way (Chrpa, 2010; Korf, 1985; McCluskey and Porteous, 1997;
Newton et al., 2007). Abstracting planning tasks by their reformulation in order to re-
veal their hierarchical structures can mitigate “accidental complexity” of their domain
models2 (Haslum, 2007).

Beside macros, another type of domain-independent DCK are Entanglements (Chrpa
and Barták, 2009; Chrpa and McCluskey, 2012), which represent relations between plan-
ning operators and predicates, aimed at eliminating unpromising alternatives in a plan-
ning engine’s search space. Inner Entanglements (Chrpa and McCluskey, 2012) are re-
lations between pairs of operators and predicates which capture exclusivity of predicate
achievement or requirement between the given operators.

The vast majority of planning engines such as FF (Hoffmann and Nebel, 2001) or those
built on top of the Fast Downward planner (Helmert, 2006) performs a pre-processing
step –called grounding– in which they compute all atoms and actions that can be reach-
able from a given initial state, mutual exclusivity of pair of atoms (those that cannot be
both present in any reachable state), and structures such as Causal Graph (Knoblock,
1994). Large grounded representation, i.e., a large number of atoms describing the envi-
ronment and actions one can perform, poses high CPU time and memory requirements
for traditional domain-independent planning engines. Noteworthy, use of some types of
DCK such as macros or inner entanglements often exacerbate the problem of large repre-
sentation, since, for example, macros have more arguments than ordinary operators and
thus have much more instances.

Outer Entanglements (Chrpa and Barták, 2009; Chrpa and McCluskey, 2012), we focus

1http://ipc.icaps-conference.org
2“accidental complexity of domain models” means their inefficient encodings decreasing performance of planning

engines
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on in this paper, aim at reducing the size of problem representation by eliminating possi-
bly unpromising grounded actions. Outer entanglements are relations between planning
operators and predicates whose instances are present in the initial state or the goal. These
relations capture a useful knowledge that some planning operators are needed only to
modify initial situation (e.g., picking up a package at its initial location) or achieve goal
situation (e.g., delivering a package to its goal location). Hence, only limited numbers of
instances of “entangled” operators has to be considered in the planning tasks which re-
duces the size and complexity of the state space planning engines have to search through.
In particular, eliminating some actions (operators’ instances) often makes some atoms
unreachable (e.g. a package cannot be in other than initial or goal location). Smaller
problem representation increases efficiency of pre-processing planning engines perform.
Consequently, state space is smaller too, as some unpromising alternatives in it are elimi-
nated. Hence, planning engines have to make less effort to search through such a reduced
state space in order to find solution plans.

Outer entanglements can be encoded in planning tasks, effectively re-formulating them,
and thus they are planner-independent. Deciding whether a given outer entanglement
holds in a planning task is PSPACE-complete, the same complexity class as the problem
of solving the planning task, hence finding outer entanglements for a planning task is
generally as hard as solving the task. On the other hand, outer entanglements are often
domain-specific rather than task specific. Therefore, we have developed an approximate,
heuristic method that is used to learn outer entanglements from training plans, solution
plans of simpler tasks in a given domain. One of the advantages of the learning approach
is that we do not have to know why a set of outer entanglements holds in a given
domain. Arguably, the nature of outer entanglements differs per different domain models
as discussed in Section 4.4. On the other hand, the heuristic method follows the premise
that outer entanglements generalize well, i.e., if a set of outer entanglements holds for
a set of (simpler) planning tasks, then it also holds for the whole class of the planning
tasks sharing the same domain model. Being a heuristic method, it is possible that the
reformulation results in incorrect choices, and there may even be instances where is
preferable to use the original search space: we investigate this issue in our experimental
evaluation.

Initial work on outer entanglements has been reported in a series of shorter papers
detailing the discovery, use and effectiveness of outer entanglements. In this paper, we
integrate and extend previous work, with:

• encodings of outer entanglements (Chrpa and Barták, 2009) including formal proofs
of their correctness;

• a collected summary of the known complexity results (Chrpa et al., 2012), and
trivial cases where entanglements hold (Chrpa and Barták, 2009);

• case studies in which we investigate what outer entanglements hold, and under
what conditions;

• an analysis of the potential impact of outer entanglements on the planning process;
• an approximation method for extracting outer entanglements (Chrpa and Barták,

2009);
• an extensive empirical study of the impact of outer entanglements in the planning

process using all the domains from the 6th and 7th IPC’s learning track3, and 7
state-of-the-art planning engines based on very different principles.

The main empirical findings from this paper are that the use of outer entanglements

3Learning track benchmarks are more natural, since entanglements extraction phase can be understood as a

learning process
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improve the planning process, often remarkably, through the planner and domain model
combinations we experimented with. The results demonstrate that the learning method,
despite being heuristically-based, often learns a useful set of outer entanglements that
generalize well for non-training planning tasks. Also, the thorough experimental analysis
provides invaluable lessons from which domain engineers can learn how to extract effective
and efficient sets of outer entanglements for their domain models.

The paper is organised as follows. After discussing related work, classical planning
is introduced, the required terminology is defined and a BlocksWorld domain running
example is introduced. Then, outer entanglements are defined, complexity of their iden-
tification and case studies referring to easy and possibly hard instances of outer en-
tanglement identification are discussed. After that a reformulation approach enforcing
outer entanglements in a planner-independent way (i.e., any standard planner can make
use of outer entanglements) is presented, and an approximation algorithm for learning
outer entanglements from training plans is introduced. Empirical analysis of impact of
outer entanglements in the planning process is provided after that and then, finally, we
conclude and present some future avenues of research.

2. Related Work

Generating DCK which can be exploited by planning engines dates back into 1970s when
systems such as REFLECT (Dawson and Siklóssy, 1977) were developed. Macros are one
of the best known type of DCK in classical planning, because they can be encoded as
normal planning operators and thus easily added into planning domain models. Macro-
FF CA-ED version (Botea et al., 2005), which learns macros through analysis of relations
between static predicates, and Wizard (Coles et al., 2007), which learns macros by genetic
algorithms, are good examples of planner-independent macro learning systems.

While the main disadvantage of using macros is the risk of a significant increase of
the branching factor during searching, there are several techniques which are used for
reducing the branching factor. One way is to combine macros with another learning
technique, specifically aimed at pruning unpromising instances of macros, such as in
McCluskey’s early work (McCluskey, 1987). The complementary technique here created
‘chunks’ - learnt relations between initial states and operator preconditions, similar to en-
tanglements by init (a subtype of outer entanglements). The method required a specially
extended planner, however, and was aimed at plan space search rather than state space
search. Recently, it has been shown that there is a synergy between macros and outer
entanglements, in other words, outer entanglements can prune unpromising instances of
macros as well as provide heuristics for their generation, which has been demonstrated
by MUM (Chrpa et al., 2014) and OMA (Chrpa et al., 2015b), where the former learns
macros from training plans while the latter generates macros online (without training
plans).

Determining action relevance is an important branch of research, which reduces the
number of instances of planning operators planning engines have to deal with. The FF
planner (Hoffmann and Nebel, 2001) instantiates only actions appearing at some level of
relaxed Planning Graph. FastDownward (Helmert, 2006) uses the “reach-one-goal” idea,
i.e., achieves the goals of the planning task consecutively, where the solver focuses only
on such actions that may be relevant for a particular goal. Other work focusing on cost-
optimal SAS+ planning (Coles and Coles, 2010) prunes irrelevant actions (e.g. actions
changing a value of a variable having no dependants from a goal value) or exploits “tun-
nel macro-actions” (i.e. if a certain action is executed then there is no other choice than
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to execute specific actions forming the “tunnel”). Haslum and Jonsson (2000) proposed
a technique for pruning actions whose effects can be acquired by executing a sequence
of different actions. Scholz (2004) proposed a method for determining action relevance
on problems with acyclic causal graphs. Scholz’s method has recently been extended to
cover problems with non-acyclic causal graphs (Haslum et al., 2013). “Expansion Core”
is a method which in a node expansion phase (in A∗ search) restricts on relevant Domain
Transition Graphs rather than all of them (Chen and Yao, 2009). The idea of “expansion
cores” is extended into strong stubborn sets that guarantees stronger pruning than expan-
sion cores (Wehrle et al., 2013). Recently, factored planning (Brafman and Domshlak,
2013) has been exploited for extending the strong stubborn sets approach and intro-
ducing decoupled strong stubborn sets that in some cases provide exponentially stronger
reductions of the problem (Gnad et al., 2016). In contrast to aforementioned techniques,
outer entanglements focus on pruning operator instances that either do not require ini-
tial atoms, or do not achieve goal atoms and thus are complementary to aforementioned
techniques.

3. Preliminaries

This section is devoted to introducing the terminology that will be used throughout the
paper.

3.1. Classical Planning

Classical planning is concerned with finding a (partially or totally ordered) sequence of
actions transforming the static, deterministic and fully observable environment from the
given initial state to a desired goal state (Fox and Long, 2003; Ghallab et al., 2004).

In the classical representation, a planning task consists of a planning domain model and
a planning problem, where the planning domain model describes the environment and
defines planning operators while the planning problem defines concrete objects, an initial
state and a set of goals. The environment is described by predicates that are specified via
a unique identifier and terms (variable symbols or constants). For example, a predicate
at(?t ?p), where at is a unique identifier, and ?t and ?p are variable symbols, denotes that
a truck ?t is at location ?p. Predicates thus capture general relations between objects.

Definition 1: A planning task is a pair Π = (DomΠ, P robΠ) where a planning
domain model DomΠ = (PredsΠ, OpsΠ) is a pair consisting of a finite set of pred-
icates PredsΠ and planning operators OpsΠ, and a planning problem ProbΠ =
(ObjsΠ, IΠ, GΠ) is a triple consisting of a finite set of objects ObjsΠ, initial state IΠ

and goal GΠ.
Let atsΠ be the set of all atoms that are formed from the predicates PredsΠ by

substituting the objects ObjsΠ for the predicates’ arguments. In other words, an atom
is an instance of a predicate (in the rest of the paper when we use the term instance,
we mean an instance that is fully grounded). A State is a subset of atsΠ, and the initial
state IΠ is a distinguished state. The goal GΠ is a non-empty subset of atsΠ, and a
goal state is any state that contains the goal GΠ.

Notice that the semantics of state reflects the full observability of the environment.
That is, that for a state s, atoms present in s are assumed to be true in s, while atoms
not present in s are assumed to be false in s.
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Planning operators are “modifiers” of the environment. They consist of preconditions,
i.e., what must hold prior an operators’ application, and effects, i.e., what is changed
after operators’ application. Actions are instances of planning operators, i.e., operators’
arguments as well as corresponding variable symbols in operators’ preconditions and
effects are substituted by objects (constants). Planning operators capture general types
of activities that can be performed. Similarly to predicates that can be instantiated to
atoms to capture given relations between concrete objects, planning operators can be
instantiated to actions to capture given activities between concrete objects.

Definition 2: A planning operator is a tuple o = (name(o), pre(o), eff−(o), eff+(o)) is
specified such that name(o) = op name(x1, . . . , xk), where op name is a unique identifier
and x1, . . . xk are all the variable symbols (arguments) appearing in the operator, pre(o)
is a set of predicates representing o’s precondition, eff−(o) and eff+(o) are sets of predi-
cates representing o’s negative and positive effects. Notice that all the predicates in o’s
definition must be defined in PredsΠ of the corresponding domain model. Actions are in-
stances of planning operators that are formed by substituting objects, which are defined
in a planning problem, for operators’ arguments as well as for corresponding variable
symbols in operators’ preconditions and effects. An action a = (pre(a), eff−(a), eff+(a))
is applicable in a state s if and only if pre(a) ⊆ s. If possible, application of a in s,
denoted as γ(s, a), results in a state (s \ eff−(a)) ∪ eff+(a).

A solution of a planning task is a sequence of actions transforming the environment
from the given initial state to a goal state.

Definition 3: A solution plan, or shortly plan, of a planning task Π =
(DomΠ, P robΠ), where ProbΠ = (ObjsΠ, IΠ, GΠ), is a sequence of actions a1, . . . , an
(all actions are instances of planning operators defined in DomΠ) such that GΠ ⊆
γ(. . . γ(IΠ, a1), . . . , an).

3.2. BlocksWorld Domain

We briefly introduce a model representing the BlocksWorld domain (Slaney and
Thiébaux, 2001), which is one of the best known planning domains, that will be used as
a running example in the paper.

The BlocksWorld domain describes an environment where we have a finite number
of blocks, one table with unlimited space, and one robotic hand. A block can be either
stacked on another block, placed on the table or held by the robotic hand. No block
can be stacked on more than one block at the same time as well as no more than one
block can be stacked on a block at the same time. The robotic hand can hold at most
one block. The BlocksWorld domain model consists of four operators: pickup(?x) refers
to a situation when the robotic hand picks-up a block ?x from the table, putdown(?x)
refers to a situation when the robotic hand puts down the block ?x it is holding to the
table, unstack(?x ?y) refers to a situation when the robotic hand unstacks a “clear” block
?x from a block ?y, and stack(?x ?y) refers to a situation when the robotic hand stacks
the block ?x it is holding to a “clear” block ?y. As mentioned before, planning operators
are instantiated by substituting constants (objects) for variable symbols that appear in
operators’ definition. For example, putdown(?x) can be instantiated by substituting a,
which refers to a concrete block “a”, for ?x. We then obtain an action putdown(a) that
requires the robotic hand to hold the block a, and the effect is that the block a is placed
on the table, the block a is clear (no other block is stacked on it), and the hand no longer
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Figure 1. An illustrative example of outer entanglements. On the left hand side, unstack is entangled by init with

on, and, on the right hand side, stack is entangled by goal with on.

holds it.

4. Outer Entanglements

This section formally introduces outer entanglements and provides theoretical analysis
of them.

4.1. Introduction

Outer Entanglements are relations between planning operators and predicates whose in-
stances are present in the initial state or the goal of some solution plan. In a BlocksWorld
planning task there exists a solution plan where unstack actions may only unstack blocks
from their initial positions (e.g., if on(a b) holds in the initial state, then unstack(a,b) ca
be present in the plan) and stack actions may only stack blocks to their goal position.
Notice that blocks can be temporarily put on the table (there are no space limits on the
table). Formally speaking, an entanglement by init will capture that if an atom on(a b)
is to be achieved for a corresponding instance of operator unstack(?x ?y) (unstack(a b)),
then the atom is present in the initial state. Similarly, an entanglement by goal will cap-
ture that an atom on(b a) achieved by a corresponding instance of operator stack(?x ?y)
(stack(b a)) is present in the goal. For illustration, see Figure 1. The outer entanglements
relation, i.e., the entanglements by init and goal, are defined as follows.

Definition 4: Let Π be a planning task, where IΠ is the initial state and GΠ is the goal.
Let o be a planning operator and p be a predicate defined in the domain model of Π. We
say that operator o is entangled by init (resp. goal) with a predicate p in Π if and
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only if p ∈ pre(o) (resp. p ∈ eff+(o)) and there exists π, a solution plan of Π, such that
for every action a ∈ π being an instance of o and for every atom pgnd being an instance
of p, it holds: pgnd ∈ pre(a) ⇒ pgnd ∈ IΠ (resp. pgnd ∈ eff+(a) ⇒ pgnd ∈ GΠ). We also
say that π satisfies the entanglement (by init or goal) conditions.
Henceforth, entanglements by init and goal are denoted as outer entanglements.

Notice that the definition allows for initial atoms to be deleted / re-achieved during the
plan, without falsifying the entanglement relationship with an operator instance requiring
such an atom later in the plan.

Also, a single outer entanglement requires only the existence of one solution plan of
the given planning task where the entanglement conditions are met. However, different
entanglements might hold in different solution plans. It is practical to consider a set of
outer entanglements for a planning task rather than a single one, which means that there
must exist a solution plan in which all entanglements from the set hold. Also, in practice,
outer entanglements are domain- or class of tasks-specific rather than task-specific. The
above definition can be extended to reflect these aspects.

Definition 5: Let Π be a planning task. We say that a set of outer entanglements ENTΠ

holds for Π if and only if there exists a solution plan of Π in which all the entanglements
from ENTΠ hold.
Similarly, ENTP holds for a set of planning tasks P if and only if ENTP =

⋂
Π∈P ENTΠ.

Both the aforementioned BlocksWorld-related outer entanglements hold for every
BlocksWorld planning task with unlimited table space.

4.2. Intractability of Deciding on Entanglements

Landmark theory (Hoffmann et al., 2004) is a useful framework for studying structures
of planning tasks. We will use a fragment of the landmark theory to prove intractability
(PSPACE-completeness) of deciding whether a given outer entanglement holds in a given
task. Landmarks are atoms which must be achieved at some point in every solution plan of
a given planning task. Action landmarks are actions which must be applied at some point
in every solution plan of a given planning task. Deciding whether atoms are landmarks
as well as whether actions are action landmarks is PSPACE-complete (Hoffmann et al.,
2004)

The intractability (PSPACE-completeness) of deciding whether a given outer entan-
glement holds is proved by the following theorem.

Theorem 1: Let Π be a planning task, o be a planning operator and p a predicate defined
in the domain model of Π. The problem of deciding whether o is entangled by init (resp.
goal) with p in Π is PSPACE-complete.

Proof. First, we show that the problem of deciding whether o is entangled by init (resp.
goal) with p in Π belongs to the PSPACE class. To do this, we reformulate Π by en-
coding the given entanglement as described in Section 5.2. Hence, the decision problem
of whether the given outer entanglement holds can be encoded as a planning task, i.e.,
the entanglement holds if and only if the reformulated planning task is solvable. We
know that we can solve planning tasks in polynomial space, hence this decision problem
belongs to PSPACE.

Next, we reduce (in polynomial time) the problem of deciding whether an action a is
an action landmark in a planning task Π′, which is PSPACE-complete, to the problem
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of deciding whether o is entangled by init (resp. goal) with p in Π. Let o′ be a planning
operator defined in the domain model of Π′ such that a is its instance. Let p be a
predicate which has the same variable symbols (arguments) as operator o′ and without
loss of generality we assume that p is not defined in the domain model of Π′.

To decide that an action a is an action landmark in a planning task Π′ by exploiting
entanglements by init, we modify Π′ in a following way. We create a planning operator o
as a modification of o′, that is, o = (name(o’), pre(o′) ∪ {p}, eff−(o′), eff+(o′)). Then, we
create a planning operator o′′ such that o′′ has the same variable symbols (arguments)
as o′, pre(o′′) = eff−(o′′) = ∅ and eff+(o′′) = {p}. Finally, we create a planning task Π by
modifying Π′ in such a way that o′ is removed, and o and o′′ are added into the set of
operators, p is added into the set of predicates, and all the instances of p but one that
has the same arguments as the action a are added into the initial state. We can see that
o is entangled by init with p in Π if and only if a is not an action landmark in Π′. This is,
because the entanglement tells us that there exists a solution plan of Π′ where a is not
present. The missing instance of p can be achieved by a corresponding instance of o′′, so
Π remains solvable even if a is an action landmark, however, the entanglement does not
hold.

To decide that an action a is an action landmark in a planning task Π′ by exploiting
entanglements by goal, we modify Π′ in a following way. We create a planning operator
o as a modification of o′, that is, o = (name(o’), pre(o′), eff−(o′), eff+(o′) ∪ {p}). Then,
we create a planning task Π by modifying Π′ in such a way that o′ is removed, and o is
added into the set of operators, p is added into the set of predicates, and all the instances
of p but one that has the same arguments as the action a are added into the initial state
and into the goal. We can see that o is entangled by goal with p in Π if and only if a is
not an action landmark in Π′. This is as in the previous case, because the entanglement
tells us that there exists a solution plan of Π′ where a is not present. If a must be applied
in all solution plans of Π′, then the instance of p which is missing in the goal of Π is
always achieved and thus the entanglement does not hold.

Clearly, modification of Π′ in both cases is done in polynomial time. Hence, since the
problem of deciding whether a is a landmark action in Π′ is PSPACE-complete, the
problem deciding whether modified o is entangled by init (resp. goal) with p in Π, which
belongs to PSPACE, is PSPACE-complete as well.

Intractability of deciding whether a single outer entanglement holds for a given plan-
ning task implies intractability of deciding whether a set of outer entanglements holds
for that task.

Corollary 1: Let e1 and e2 be outer entanglements that hold in a planning task Π. The
problem of deciding whether a set {e1, e2} holds in Π is PSPACE-complete.

Proof. Without loss of generality, let Πe1 be a planning task obtained by reformulating
Π considering e1 (see Section 5.2). Then, the problem of deciding whether {e1, e2} holds
in Π is equivalent to the problem of deciding whether e2 holds in Πe1 which is PSPACE-
complete.

4.3. Special Cases

Despite the intractability, there are some cases where we can trivially identify outer en-
tanglements (hereinafter referred as trivial outer entanglements). The following situations
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refer to special cases where there is no way to violate outer entanglements in the planning
process. However, trivial outer entanglements do not provide any new domain-specific
information and hence we do not have to consider them in the reformulation.

For instance, if a predicate p is not achieved by any operator defined in the domain
model (e.g. p is a static predicate), then any operator having p in its precondition is
entangled by init with p.

Lemma 1: Let Π be a planning task, p be a predicate and Ops be the set of planning
operators defined in the domain model of Π. If p 6∈ eff+(o) for every o ∈ Ops, then
for every o ∈ Ops it is the case that o is entangled by init with p in Π if and only if
p ∈ pre(o).

Another trivial example where outer entanglements can be easily determined is when
all instances of a predicate are present in the initial state or the goal.

Lemma 2: Let Π be a planning task, I its initial state and G its goal. Let Ops be the
set of planning operators and p be a predicate defined in the domain model of Π such
that all possible instances of p are present in I (resp. G). Then, an operator o ∈ Ops is
entangled by init (resp. goal) with p in Π if and only if p ∈ pre(o) (resp. p ∈ eff+(o)).

4.4. Case Studies

In the BlocksWorld domain, which we also used as a running example, we can identify
two non-trivial outer entanglements. The operator unstack is entangled by init with the
predicate on and the operator stack is entangled by goal with on. A typical task (re-
stacking the blocks from initial stacks to goal stacks) can be solved as follows. Blocks
are unstacked from their initial positions and put down on the table until all the blocks
are on the table. Then, we pick the blocks up and stack them on their goal positions (in
the right order). We can see that both the entanglements hold for such solution plans.
However, limiting the space on the table (in some modification of the domain) might
invalidate these entanglements since due to lack of table space we might be forced to
temporarily stack blocks on other blocks. Clearly, if the table space is greater or equal
the number of blocks, or if goal stacks of blocks are reverted initial stacks of blocks,
the entanglements still hold. However, in a general case deciding whether one or both
entanglements hold for a given planning task having the modified domain model can be
as hard as solving the task.

In the well-known ZenoTravel domain, which addresses the problem of transporting
passengers by planes between cities, we can observe that the operator board is entangled
by init with the predicate at and the operator debark is entangled by goal with at. A
typical problem can be solved as follows. Each passenger can board an aircraft at the
location of origin (if no aircraft is there, then it will arrive from a different location), then
the aircraft flies to passenger’s destination location where the passenger debarks. The
entanglements hold in such solution plans. However, modifying the domain by constrain-
ing the locations where a particular aircraft can fly might invalidate the entanglements
which will be the case when some passenger would have to change the aircraft at some
(non-initial) location. Deciding whether the entanglements (or one of them) hold is easy
in the modified domain, since for each passenger we can check whether there is a direct
flight or not. Similarly, we can identify outer entanglements in the similar logistic-based
domains.

Although we identified some domain-specific cases where identifying (non-trivial) outer
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entanglements is easy, we are still missing a more general domain-independent approach
for identifying a subclass of non-trivial outer entanglements in polynomial time. We
believe that analysing structure of planning tasks (e.g. relations between planning oper-
ators, mutexes) can be useful for identifying some non-trivial outer entanglements.

5. The Use of Outer Entanglements to Speed-up the Planning Process

This section is devoted to practical use of outer entanglements.

5.1. Motivation

The reason for introducing the outer entanglement relation was to form the basis of a
tool for eliminating potentially unnecessary instances of planning operators and thus
reduce “overheads” for planning engines (Chrpa and Barták, 2009). This follows the
observation that in many domains some operators are needed only to modify the initial
state of the object, or achieve the goal state of the object. Given the example of the
BlocksWorld domain (see Figure 1 in Section 4), we can see that since the unstack
operator is entangled by init with the on predicate only the instances unstack(b a) and
unstack(c b) are necessary, so we can prune the rest of unstack’s instances because they are
not necessary to find a solution plan. Similarly, we can see that since the stack operator
is entangled by goal with the on predicate only the instances stack(a b) and stack(b c)
are necessary, so we can prune the rest of stack’s instances. Usefulness of such pruning
can be demonstrated in the following way. Given n blocks, we can have at most n ·(n−1)
instances of stack or unstack (we do not consider instances when a block is unstacked
from or stacked on itself – e.g stack(a a)). Considering both the entanglements, we can
have at most n− 1 instances of the stack or unstack operators. In summary, while in the
original setting, the number of operators’ instances grows quadratically with the number
of blocks, considering outer entanglements reduces the growth of the number of operators’
instances to linear. Consequently, the state space (i.e., the number of reachable states)
can be also reduced. In the BlocksWorld case, a block cannot be stacked on another block
unless it is its initial or goal configuration. Hence, when the given outer entanglements are
applied there are only at most two (other) blocks a block can be stacked on at any point
of the planning process. Otherwise (in the original encoding), a block can be stacked on
n− 1 other blocks (excluding itself) at any point of the planning process.

Outer entanglements are encoded by supplementary static predicates that are added
into preconditions of operators involved in the outer entanglement relation. Most of ex-
isting planning engines generate operators’ instances in preprocessing, i.e., they perform
grounding. Static predicates are only useful at this stage; they are useful in filtering un-
reachable operators’ instances4, however, static predicates do not provide any valuable
information in search, so planners are compiling them away after grounding. Hence, intro-
ducing supplementary static predicates does not increase the number of atoms planners
have to deal with during the search. Reducing the number of actions planners have to
consider during the search reduces the branching factor and thus “narrows” the search
space. Moreover, memory requirements for planners can be often considerably lowered.

However, outer entanglements might cause some actions to become irreversible. For
example, if we allow unstacking blocks only from their initial positions (captured by
the entanglement by init mentioned before), then we cannot recover from a situation

4by unreachable operator instances we mean those not applicable at any point of the planning process
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(:action unstack

:parameters (?x - block ?y - block)

:precondition (and (on ?x ?y)(clear ?x)(handempty)(stai_on ?x ?y))

:effect (and (holding ?x)(clear ?y)

(not (clear ?x))(not (handempty))(not (on ?x ?y)))

)

Figure 2. An example of the encoding of an entanglement by init between the unstack operator and the on
predicate.

where a block becomes eventually stacked on an “incorrect” block. Also by having a
“symmetrical” entanglement by goal between the operator stack and the predicate on
which allows stacking blocks only on their goal position, we might not recover from a
situation where the goal tower of blocks is being built from “the middle”. Hence, outer
entanglements may introduce dead-ends which might be detrimental for some planning
techniques, especially those based on local search.

5.2. Reformulating Planning Tasks

To exploit outer entanglements during the planning process we have to develop a specific
planner, modify an existing one, or we have to reformulate planning tasks in such a way
that outer entanglements are enforced during the search. The last option is planner-
independent because, as we will show later, reformulation does not require any features
which are not provided within classical (STRIPS) planning (see Section 3).

Encoding outer entanglements is done by introducing static predicates that eliminate
instances of operators that do not “comply” with these entanglements (for more back-
ground details, see (Chrpa and Barták, 2009)). Let Π be a planning task, I be its initial
state and G its goal. Let an operator o be entangled by init (resp. goal) with a predicate
p (o and p are defined in the domain model of Π) in Π. Then the task Π is reformulated
as follows:

(1) Create a predicate p′ (not defined in the domain model of Π) having the same
arguments as p and add p′ into the domain model of Π.

(2) Modify the operator o by adding p′ into its precondition. p′ has the same arguments
as p which is in precondition (resp. positive effects) of o.

(3) Create all possible instances of p′ which correspond to instances of p listed in I
(resp. G) and add the instances of p′ to I.

Adding p′, which is in fact a static predicate, into precondition of o causes that instances
of o that are “prohibited” by the entanglement become unreachable. Figure 2 depicts the
encoding of an entanglement by init between the unstack operator and the predicate on.
In our terminology, unstack(?x ?y) refers to o, on(?x ?y) to p and stai on(?x ?y) to p′.
Correctness of the reformulation is formally proved as follows.

Proposition 1: Let Π be a planning task, o be a planning operator and p be a predicate
(o and p are defined in the domain model of Π) such that o is entangled by init (resp. goal)
with p in Π. Let Π′ be a planning task obtained by reformulating Π using the previous
approach. π′ is a solution plan of Π′ if and only if π′ is a solution plan of Π that satisfies
the entanglement conditions (see Definition 4).

Proof. Hereinafter, we will refer to modified o as o′. Adding predicates only into precon-
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dition of an operator does not affect the result of application of its instances. For each
ground substitution ξ (mapping variable symbols to constants) it holds that applying
ξ(o′) in some state s (if possible) results in the same state as applying ξ(o) in s (o and o′

have the same variable symbols). From this, we can observe that if π′ is a solution plan
of Π′, then π′ is a solution plan of Π. For each ground substitution ξ (mapping variable
symbols to constants) it holds that ξ(p′) ∈ I ′ ↔ ξ(p) ∈ I or ξ(p′) ∈ I ′ ↔ ξ(p) ∈ G
respectively (I ′ is the initial state of Π′). No instance of p′ can be achieved or deleted
during the planning process, since no operator defined in the domain model of Π′ has
p′ in its positive or negative effects. Hence, for every o’s instance a ∈ π′ and p’s cor-
responding instance pgnd ∈ pre(a) it is the case that pgnd ∈ pre(a) → pgnd ∈ I (resp.
pgnd ∈ pre(a) → pgnd ∈ G). From this, π′ also satisfies the entanglement conditions in
Π (see Definition 4). Also, given that each instance of p present in I (resp. G) has its
“twin”, i.e., a corresponding instance of p′ present in I ′, only instances of o that violate
the entanglement are pruned. Therefore, if π′ is a solution plan of Π that satisfies the
entanglement conditions, then π′ is a solution plan of Π′.

5.3. Extracting Entanglements from Training Plans

Deciding whether a given outer entanglement holds is generally PSPACE-complete as
well as deciding whether the set of outer entanglements hold (as discussed in Section 4.2).
Trivial entanglements, which can be identified easily (see Section 4.3), are not informative
and thus not considered for task reformulation. Therefore, we have to devise an effective
approximation technique for extracting sets of outer entanglements. We assume that
tasks having the same domain model have a similar structure, so the same set of outer
entanglements holds in all of them. Hence, we can select a representative set of simple
tasks for each domain model as training tasks, so those can be solved easily by standard
planning engines. Generated training plans, that is the solutions of these training tasks,
are then explored in order to find what entanglements hold in them.

The above approach can be formalised as follows. Let P be a class of planning tasks
that has the same domain model. Let PT ⊂ P be a set of training tasks. In our ap-
proximation method, we assume that ENTPT

= ENTP , in other words, a set of outer
entanglements valid on training planning tasks is also valid on the whole class of planning
tasks. This assumption is a potential source of incompleteness, since using a set of outer
entanglements that does not hold for some planning tasks may make a task unsolvable
within that re-formulation. On the other hand, planning tasks having the same domain
model are of similar structure (e.g. they differ only by number of objects), which is the
case of the most of IPC benchmarks. This provides evidence that selecting a small set of
these tasks such that selected tasks are easy but not trivial, can mitigate the heuristic
nature of the method, and thus support the assumption. A thorough empirical study
that also explores these issues is provided in Section 6.

Determining whether a set of outer entanglements holds in all the training plans is often
not a very efficient way to determine a useful set of outer entanglements, as previously
discussed in the literature (Chrpa and Barták, 2009). There are two main reasons. Firstly,
training plans might contain redundant actions or very sub-optimal sub-plans which can
prevent detecting some useful entanglements. Secondly, there might be several strategies
how a task can be solved, where only some of these lead into discovery of some useful
entanglements. For example, in BlocksWorld, we might “put aside” blocks in two different
ways: put them on the table, or stack them on other blocks. Only the former way leads to
the discovery of two useful outer entanglements (i.e., unstack is entangled by init with on
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Algorithm 1 Checking how many times the outer entanglement conditions are met for
each relevant pair (operator,predicate).

Require: a set of training tasks with corresponding solution plans (training plans), flaw
ratio η

Ensure: a set of outer entanglements ENT
1: initialize ent arrays(); {create empty arrays entI, entG of size [Ops, Preds]}
2: initialize op counter(); {create an empty array counter of size [Ops]}
3: for each training plan π = 〈a1, . . . an〉 do
4: for i := 1 to n do
5: for each p ∈ pre(ai) do
6: if p ∈ I then
7: entI[is inst(ai), is inst(p)] + +;
8: end if
9: end for

10: for each p ∈ eff+(ai) do
11: if p ∈ G then
12: entG[is inst(ai), is inst(p)] + +;
13: end if
14: end for
15: counter[is inst(ai)] + +;
16: end for
17: end for
18: ENT = ∅
19: for each (o, p) ∈[Ops,Preds] such that counter(o) > 0 do
20: if not trivial eI(o, p) and entI[o, p]/counter(o) ≥ 1− η then
21: ENT = ENT ∪ {eI(o, p)}
22: end if
23: if not trivial eG(o, p) and entG[o, p]/counter(o) ≥ 1− η then
24: ENT = ENT ∪ {eG(o, p)}
25: end if
26: end for

and stack is entangled by goal with on). Using optimal planners might alleviate the issue
related to sub-optimal plans but it might be computationally very expensive even for
training tasks. Moreover, using optimal planners might not handle the “strategy issue”.

Introducing a flaw ratio η ∈ [0; 1] which is a parameter referring to an allowed percent-
age of “flaws” in training plans can identify outer entanglements that can be discovered
in plans that are somehow “close” to the training plans. Let η be a flaw ratio, then the
outer entanglements are extracted as follows:

eI(o, p) ⇔ entI[o, p]

counter[o]
≥ 1− η (1)

eG(o, p) ⇔ entG[o, p]

counter[o]
≥ 1− η (2)

The method for extracting sets of outer entanglements in training plans is presented in
our previous work (Chrpa and Barták, 2009). For every action we check how many times
instances of predicates in its precondition and positive effects, respectively correspond
with atoms in the initial state and the goal, respectively of the given training task.

14



May 1, 2018 Journal of Experimental & Theoretical Artificial Intelligence main

Algorithm 2 Extraction of outer entanglements with the flaw ratio.

Require: init-fr (the initial value of flaw ratio), step (a decrement of flaw ratio)
Ensure: reformulated planning tasks

1: generate training plans
2: η = init-fr + step
3: repeat
4: η = max(0, η − step)
5: extract entanglements by Alg. 1 considering η
6: generate reformulated training tasks
7: until η = 0 or all the reformulated training tasks are solvable
8: generate reformulated (testing) tasks

This information is then used for extracting a set of outer entanglements. This idea is
elaborated in Algorithm 1. We define an array counter, which stores information about
how many instances of given operators occur in the training plans, arrays entI, entG,
which count how many times the conditions of entanglement by init or goal are satisfied
for pairs of operators and predicates (Lines 3-17). Function is inst(arg) returns either
an operator if arg (action) is an instance of it or a predicate if arg (atom) is an instance
of it. Then, a set of outer entanglements is extracted according to a given flaw ratio η
(equations (1) and (2)) while ignoring trivial outer entanglements (Lines 18-26).

Algorithm 1 requires linear time with respect to the lengths of given training plans if
the number of atoms in actions’ preconditions and effects is much lower than lengths of
training plans, so it can be bounded by a constant.

Introducing the flaw ratio (η) might invalidate the assumption that the extracted set of
outer entanglements (by Algorithm 1) holds for the training tasks. Hence, the assumption
must be verified after the set of outer entanglements is extracted. This idea is elaborated
in Algorithm 2. A value of flaw ratio η is initially set to init-fr+step (Line 2). The main
loop (Lines 3-7) iteratively decreases η by the decrement step (Line 4), extracts a set of
outer entanglements by Algorithm 1 (Line 5), reformulates the training tasks according
to the approach described in Section 5.2 (Line 6) and tries to solve these reformulated
training tasks. Failing to solve any of the reformulated training tasks indicates that the
extracted set of entanglements does not hold for all the training tasks (so, we have to
continue by going back to Line 3). Clearly, if η = 0 then, the training plans are also
solution plans of the reformulated training tasks.

6. Experimental Evaluation

This section is devoted to the empirical evaluation of the impact of outer entanglements
in the plan generation process. The aims of the experiments are: (i) to analyse the
impact of outer entanglements on state-of-the-art planning engines; (ii) to assess how
different training plans influence extraction of outer entanglements; and (iii) to measure
the influence of outer entanglements on grounding, i.e., how reduced is the size of the
search space.

6.1. Experimental Setup

In order to perform our analysis, we selected a number of planners according to i) their
performance in the IPCs, and ii) the variety of techniques they exploit. Selected planners
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are: Metric-FF (Hoffmann, 2003), LPG-td (Gerevini et al., 2003), LAMA (Richter and
Westphal, 2010; Richter et al., 2011), Probe (Lipovetzky and Geffner, 2011; Lipovetzky
et al., 2014), MpC (Rintanen, 2012, 2014), Yahsp3 (Vidal, 2014), and Mercury (Domsh-
lak et al., 2015).

For the empirical evaluation purposes we selected all the domains used in the learn-
ing tracks of IPC-6 and IPC-7; since outer entanglements are automatically extracted
domain-specific knowledge, the learning track benchmarks seem to be the most appro-
priate. This test set is thus independent, open, and gives a relatively wide coverage.

In each domain, the planning tasks have the same domain model and thus differ only
by planning problem specifications. Henceforth, training problems denote tasks that are
used for learning entanglements, and testing problems denote tasks that are used as
benchmarks. In the learning track of IPC-7 (Coles et al., 2012), a set of training problems
is not explicitly provided and thus the training problems have to be generated by provided
problem generators.

In Machine Learning, it is important to have a good quality training set in order to
maximise the outcome of the learning process. From the planning perspective, training
plans should capture the important structural aspects that are generalizable to the whole
class of planning tasks. According to the observation made by Chrpa et al. (2013) sets of
extracted entanglements often do not change with increasing number of training prob-
lems. Similar observations have been made when configuring portfolios of planners (Núñez
et al., 2012). On the other hand, using very few training problems increases the risk of
extracting outer entanglements that do not generally hold (we might be “lucky” to have
a very atypical problem as a training one). Following these observations, 5 training prob-
lems per domain were used. Regarding complexity of training problems, there are some
aspects that should be taken into account. If training plans are too short, it indicates
that their structure might be over-constrained and thus not typical for tasks in a given
class. Consequently, we might extract some outer entanglements that do not hold for
such “typical” tasks. On the other hand, obtaining long training plans might be too
time consuming or even impossible, since planning is computationally very expensive.
Hence, we have experimentally observed –by conducting preliminary investigations on a
disjoint set of benchmarks, and by considering results from literature (Chrpa and Barták,
2009; Chrpa and McCluskey, 2012)– that a reasonable size for training problems is when
the length of their solution plans is at least 20 in average. With larger number of de-
fined operators in the domain model the length of training plans should be higher (more
operators yields longer solution plans).

The benchmark planners were used to generate training plans. The flaw ratio (η)
was initially set to 0.2, and, in case of any of the training problems became unsolvable
after incorporating outer entanglements5, the flaw ratio was iteratively reduced by the
decrement of 0.05 until the set of extracted outer entanglement held for all training
problems, or the flaw ratio dropped to 0.0 (for details, see Algorithm 2). Although in
the literature (Chrpa and Barták, 2009; Chrpa and McCluskey, 2012) the flaw ratio is
set to 0.1, we observed on some preliminary experiments, performed on a small set of
benchmarks (not included in the rest of this experimental analysis) that such a value
is too conservative. On the other hand, setting the value above 0.2 led to extraction of
outer entanglements that often did not hold in the training problems.

A CPU-time cutoff of 900 seconds (15 minutes, as in learning tracks of IPC) was
used for both learning and testing runs. All the experiments were run on 3.0 Ghz CPU

5by “unsolvable” we mean those problems where the planner did not find a solution within the given time limit

of 900 CPU-time seconds.
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Domain Outer Entanglements
Barman ∀
Bw {Probe} ⊃ {Lama,Mercury,Yahsp}
Depots {FF,Lama,LPG,MpC,Probe}
Gold-m ∀\{Yahsp} ⊃ {Yahsp}
Gripper ∀\{Yahsp} ⊃ {Yahsp}

Matching-Bw {Lama} ⊃ {FF,Mercury} ⊃ {LPG}
{MpC,Yahsp}

⊃ {Probe}

Parking {FF}, {Lama}
Rovers ∀
Satellite ∀
Sokoban ∀
Spanner ∀
Thoughtful {Probe} ⊃ {FF}, {MpC} ⊃ {LPG}, {LAMA}, {Mercury}, {Yahsp}
TPP {FF,LPG,Mercury} ⊃ {Lama,MpC,Probe,Yahsp}

Table 1. Sets of extracted outer entanglements according to planners whose training plans were used. ∀ denotes
the set outer entanglements consisting of all the planners. The ⊃ relation denotes the superset relation between

corresponding sets of outer entanglements.

machine with 4GB of RAM. In this experimental analysis, IPC scores as defined in
IPC-7 are used. For a planner C and a problem p, Time(C, p) is 0 if p is unsolved, and
1/(1 + log10(Tp(C)/T ∗p )), where Tp(C) is the CPU time needed by planner C to solve
problem p (if the actual CPU time is less than 1 second, then Tp(C) = 1, i.e., 1 second
is considered as a minimum CPU time needed to solve any problem) and T ∗p is the CPU
time needed by the best considered planner, otherwise. Similarly, Qual(C, p) is 0 if p is
unsolved, and N∗p /Np(C), where Np(C) is the cost of the plan, solution of p, obtained by
C and N∗p is the minimal cost of the solution plan of p among all the considered planners,
otherwise. The IPC score on a set of problems is given by the sum of the scores achieved
on each considered problem.

6.2. Experimental Results: The Learning Phase

Table 1 shows the different sets of outer entanglements that were extracted by using con-
sidered planners for generating training plans. The planners used for generating training
plans are arranged into sets, where each set contains all the planners that generate the
same set of outer entanglements. Where applicable, the sets are ordered according to
the ⊃ relation, which denotes the superset relation between corresponding sets of outer
entanglements. For example, in Bw, we have extracted two different sets of outer entan-
glements. The first set was extracted from training plans generated by Probe, the second
was extracted from training plans generated by either LAMA or Mercury or Yahsp. The
first set is a superset of the second one. Notice that using training plans generated by
either FF or LPG or MpC has led to an empty set of outer entanglements (i.e., no
non-trivial outer entanglements have been extracted). Hereinafter, a planner -plan set of
entanglements will denote a set of outer entanglements obtained by using training plans
extracted by a given planner, i.e., an FF-plan set of entanglements is obtained by using
plans extracted by FF. We have made the following observations:

• no outer entanglements were detected at all in the nPuzzle domain, hence we have
omitted the results from this domain in the rest of the analysis;
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• in five domains, namely Barman, Rovers, Satellite, Sokoban and Spanner, the sets
of outer entanglements were the same for all the planners;

• in Matching-bw and Thoughtful, there were considerable differences among the
planners;

• in Parking and Thoughtful, there is no set that contains all the outer entanglements
(i.e., there is not a superset to all the other sets)

Pruning power of outer entanglements along with numbers of extracted outer entangle-
ments is shown in Table 2. Ratios of instantiated atoms and actions by the Probe planner
in reformulated vs. original problems are presented (e.g. a value of 0.7 means that 70%
of atoms/actions are considered in the reformulated tasks). Notice that Mercury- and
Probe-sets in Thoughtful do not hold for 6 and 4 testing problems respectively. In these
problems, the reachability check did not reach the goal, so these (reformulated) problems
are unsolvable. Table 2 therefore refers to reduction of the size of problem representation
when outer entanglements are applied.

Remarkably, different outer entanglements have different pruning power. For example,
in Rovers five entanglements prune only about 11% of actions and 5% of atoms, while
one entanglement in Bw (set no. II) prunes about 97% of action and 94% of atoms.

6.3. Experimental Results: The Testing Phase

Table 3 gives us an overview of performance of planners on the original testing problems
and problems reformulated by different sets of outer entanglements we extracted during
the learning phase (see Tables 1 and 2). In particular, the results simulates a “com-
petition” between different encodings for each domain and planner. Coverage denotes
how many tasks (out of 30) were solved in the given time-limit (15 minutes) for each
configuration. Remarkably, in Bw, Gripper, and Matching-Bw, the use of inner entan-
glements allowed some planners to solve all 30 problems in the given time-limit in spite
of the fact that they did not solve any task using the original encoding. The IPC score
gives a relative evaluation that ranges per task from 0, i.e., the task has not been solved,
to 1, i.e., the task has been solved in the smallest CPU-time (or in 1 second) or the
solution plan is of the best quality. Hence, if the IPC score is equal (or very close to) the
coverage, then the tasks were solved in the (nearly) smallest time or (nearly) the best
quality among the encodings. For example, In Depots, the I set provides the best results
against the original encoding among almost all the planners.

In summary, in the vast majority of cases, using outer entanglements has positive
impact on the planners’ performance. For example, in Bw, Depots, Matching-bw, Gripper
and TPP the impact is remarkable. Table 4 summarizes results across the planners for
each set of outer entanglements as well as original encodings and ranks them according
to achieved score in three categories - coverage, speed and quality. As can be seen from
Table 2, the sets of outer entanglements are ordered according to their pruning power, i.e.,
the set I is the most pruning set of outer entanglements. Also, as Table 1 shows in all the
cases, except Parking and Thoughtful, I contains all the outer entanglements extracted
in a particular domain, i.e., I is a superset of all other sets of outer entanglements.

In three domains out of 13, namely Barman, Parking and Sokoban, the original encod-
ing achieved the best overall results, although in Sokoban, the original encoding yielded
to worse coverage. In Thoughtful, the set III yielded to the best performance, while the
set I unperformed even the original encoding. In TPP, the set II was the best in the
coverage and quality metrics, while the set I was the best in the speed metric. In the rest
of domains, the set I shows the best performance according to all the criteria.
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No. Set EI EG Atoms Actions
Barman

I ∀ 1 1 0.54 0.53
Bw

I {Probe} 1 1 0.06 0.02
II {Lama,Mercury,Yahsp} 0 1 0.06 0.03

Depots
I {FF,Lama,LPG,MpC,Probe} 2 1 0.28 0.07

Gold-miner
I ∀\{Yahsp} 3 0 1.00 0.90
II {Yahsp} 2 0 1.00 1.00

Gripper
I ∀\{Yahsp} 2 1 0.71 0.07
II {Yahsp} 2 0 1.00 0.54

Matching-bw
I {Lama} 1 4 0.25 0.08
II {FF,Mercury} 0 4 0.25 0.10
III {LPG} 0 3 0.63 0.44
IV {MpC,Yahsp} 0 3 0.63 0.44
V {Probe} 0 2 0.63 0.56

Parking
I {Lama} 1 0 1.00 0.79
II {FF} 1 0 1.00 0.79

Rovers
I ∀ 2 3 0.95 0.89

Satellite
I ∀ 0 1 0.52 0.98

Sokoban
I ∀ 2 0 0.97 0.90

Spanner
I ∀ 1 0 1.00 1.00

Thoughtful
I {Yahsp} 6 0 1.00 0.70
II {FF} 8 0 1.00 0.79
III {Lama} 5 1 1.00 0.81
IV {MpC} 10 0 1.00 0.81
V {LPG} 6 0 1.00 0.92
VI {Mercury} 7 1 N/A N/A
VII {Probe} 15 0 N/A N/A

TPP
I {FF,LPG,Mercury} 3 0 0.40 0.03
II {Lama,MpC,Probe,Yahsp} 2 0 0.40 0.09

Table 2. Numbers of entanglements by init (EI) and by goal (EG) per set. Ratios of instantiated atoms and

actions by the Probe planner in reformulated vs. original testing problems (in ascending order per domain). ∀
denotes the set consisting of all the planners.

Figure 3 shows the coverage performance of the considered planners when exploiting
the original encodings, and the encodings enhanced with the I sets of outer entanglements.
Results are cumulative across all the testing benchmarks and demonstrate that coverage
increased overall for each planner when the I sets of outer entanglements are used. The
largest impact can be observed on the performance of the MpC planner, where the
coverage is increased by 125 instances (32.1%). We believe that such an improvement was
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FF LPG Lama Probe MpC Mercury Yahsp
Set C S Q C S Q C S Q C S Q C S Q C S Q C S Q

Barman
O 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 4 3.3 4.0 0 0.0 0.0 24 24.0 23.9 0 0.0 0.0
I 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 24 24.0 23.1 0 0.0 0.0 3 2.4 3.0 0 0.0 0.0

Bw
O 0 0.0 0.0 24 8.0 16.1 25 10.3 16.0 25 8.0 21.4 0 0.0 0.0 19 9.6 7.7 28 17.4 5.1
I 30 30.0 30.0 30 29.3 30.0 28 28.0 28.0 30 29.8 29.9 30 29.7 30.0 30 26.6 30.0 30 28.9 30.0
II 21 12.6 11.0 30 29.6 16.1 29 19.9 15.2 30 28.4 29.2 30 24.3 22.6 29 25.5 11.1 30 27.5 5.2

Depots
O 1 0.3 0.7 11 4.0 9.5 0 0.0 0.0 30 12.8 27.4 18 6.1 15.1 0 0.0 0.0 21 8.9 4.4
I 30 30.0 30.0 30 30.0 29.8 27 27.0 27.0 30 29.5 29.7 30 30.0 30.0 27 27.0 27.0 30 30.0 30.0

Gold-miner
O 30 24.8 30.0 30 30.0 29.5 30 30.0 14.2 30 30.0 29.4 30 30.0 24.0 30 28.1 19.5 25 24.0 24.1
I 30 30.0 27.6 30 30.0 29.4 30 30.0 29.6 30 30.0 29.5 30 30.0 27.3 30 30.0 30.0 30 30.0 27.3
II 30 24.8 30.0 30 30.0 29.5 30 30.0 28.2 30 30.0 29.4 30 30.0 27.3 30 27.9 19.5 28 25.1 27.0

Gripper
O 0 0.0 0.0 30 16.1 27.1 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
I 3 3.0 3.0 30 30.0 29.9 0 0.0 0.0 30 30.0 30.0 30 30.0 30.0 0 0.0 0.0 0 0.0 0.0
II 0 0.0 0.0 30 21.0 29.9 0 0.0 0.0 0 0.0 0.0 15 7.6 14.9 0 0.0 0.0 0 0.0 0.0

Matching-bw
O 12 4.7 10.2 21 10.4 15.0 22 17.4 15.7 15 6.6 9.2 0 0.0 0.0 9 4.7 6.4 14 9.4 6.0
I 30 30.0 29.8 30 29.6 29.4 30 29.8 29.6 30 29.7 30.0 30 30.0 29.8 30 29.9 30.0 30 30.0 30.0
II 30 25.9 24.0 30 26.9 25.3 30 26.0 21.5 30 25.2 19.5 30 30.0 22.7 30 27.5 19.5 30 28.1 14.4
III 25 13.6 19.5 27 22.3 19.0 28 21.1 20.8 21 14.0 13.5 22 9.4 9.6 25 15.0 14.1 26 19.9 11.9
IV 27 17.8 21.4 30 12.3 23.6 29 20.5 20.7 25 14.3 16.0 25 14.8 11.7 28 17.5 17.3 28 24.1 12.8
V 21 10.1 16.7 27 16.7 20.2 28 19.4 20.3 16 9.9 10.3 12 6.0 5.1 24 14.0 12.9 25 18.6 11.3

Parking
O 7 5.2 6.6 0 0.0 0.0 9 8.5 9.0 3 2.8 2.8 5 5.0 5.0 6 5.5 6.0 0 0.0 0.0
I 5 4.6 4.8 0 0.0 0.0 2 1.5 1.4 1 1.0 1.0 1 0.5 0.8 8 7.7 6.3 0 0.0 0.0
II 7 6.5 6.4 0 0.0 0.0 2 2.0 1.5 5 4.8 4.6 4 3.4 3.5 1 0.6 0.7 5 5.0 5.0

Rovers
O 0 0.0 0.0 28 26.7 27.9 28 25.4 27.7 28 26.5 27.6 6 4.2 5.9 24 23.6 24.0 30 21.4 30.0
I 0 0.0 0.0 26 25.8 25.9 29 29.0 28.9 29 29.0 28.7 23 23.0 22.9 24 23.9 24.0 30 30.0 30.0

Satellite
O 0 0.0 0.0 30 27.4 30.0 3 3.0 2.9 0 0.0 0.0 1 1.0 1.0 20 19.9 20.0 16 15.4 16.0
I 0 0.0 0.0 30 30.0 30.0 4 4.0 4.0 0 0.0 0.0 1 0.9 1.0 20 20.0 20.0 16 16.0 16.0

Sokoban
O 18 16.0 17.5 28 25.9 23.9 19 18.1 18.0 24 20.6 22.2 30 28.6 28.3 19 18.1 18.0 25 20.2 23.8
I 22 19.9 20.5 26 21.4 24.4 19 14.6 15.3 24 22.4 21.7 30 27.7 27.9 19 14.6 15.3 28 26.2 24.5

Spanner
O 0 0.0 0.0 30 29.9 30.0 0 0.0 0.0 0 0.0 0.0 30 29.9 30.0 0 0.0 0.0 0 0.0 0.0
I 0 0.0 0.0 30 30.0 30.0 0 0.0 0.0 0 0.0 0.0 30 30.0 30.0 0 0.0 0.0 0 0.0 0.0

Thoughtful
O 17 12.9 16.0 0 0.0 0.0 25 19.4 22.3 20 16.7 18.1 0 0.0 0.0 21 17.3 19.7 8 6.3 6.0
I 17 11.6 15.3 1 0.6 0.9 23 20.0 18.8 18 15.1 13.7 0 0.0 0.0 21 18.7 19.0 2 2.0 1.7
II 18 16.7 17.2 1 0.6 0.9 25 19.4 22.3 21 15.6 18.5 2 2.0 2.0 22 20.5 21.3 17 14.6 16.2
III 27 25.3 26.2 0 0.0 0.0 28 24.5 27.4 25 19.5 23.7 0 0.0 0.0 27 24.2 26.1 23 18.9 21.8
IV 17 14.0 15.9 1 1.0 1.0 20 17.7 17.8 21 19.2 18.5 0 0.0 0.0 19 16.9 17.7 6 4.5 3.6
V 15 11.2 14.1 0 0.0 0.0 25 18.9 22.5 17 14.1 15.8 0 0.0 0.0 20 16.3 18.8 12 9.8 9.8
VI 16 13.5 13.8 17 15.3 17.0 15 14.0 13.2 15 12.1 12.9 1 1.0 1.0 15 13.6 12.9 13 9.4 11.8
VII 11 7.4 8.7 11 11.0 9.5 10 7.2 8.1 8 5.9 6.2 1 1.0 1.0 10 7.3 7.6 10 9.2 9.0

TPP
O 0 0.0 0.0 1 0.3 0.6 16 6.1 15.3 14 5.1 13.8 11 4.7 10.6 19 8.3 19.0 20 12.7 19.9
I 0 0.0 0.0 27 26.8 26.3 30 30.0 28.9 30 30.0 27.0 21 19.7 20.8 30 30.0 26.0 30 30.0 29.4
II 3 3.0 3.0 29 20.7 27.7 30 20.0 29.2 30 18.7 29.7 18 14.5 17.4 30 22.2 28.9 30 26.2 29.8

Table 3. Comparing planners’ performance in terms of (C)overage, (S)peed IPC score and (Q)uality IPC score
on the (O)riginal and reformulated tasks by different sets of outer entanglements. The best results per planner

and domain are highlighted.

achieved because outer entanglements reduced, often considerably, memory requirements.
On the contrary, Yahsp coverage performance are less affected by the exploitation of set
I entanglements: 39 more instances are solved (10.0%).
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Coverage Speed Quality Coverage Speed Quality
Set Count Set Score Set Score Set Count Set Score Set Score

Barman Rovers
O 28 O 27.3 O 27.9 I 161 I 160.7 I 160.4
I 27 I 26.4 I 26.1 O 144 O 127.7 O 143.1

Bw Satellite
I 208 I 202.3 I 207.9 I 71 I 70.9 I 70.9
II 199 II 167.8 II 119.2 O 70 O 66.6 O 69.9
O 121 O 53.4 O 66.2 Sokoban

Depots I 168 O 147.3 O 151.7
I 204 I 203.5 I 203.4 O 163 I 146.9 I 149.6
O 81 O 32.0 O 57.1 Spanner

Gold-miner I/O 60 I 60.0 I/O 60.0
I 210 I 210.0 I 200.7 I/O 60 O 59.9 I/O 60.0
II 208 II 197.9 II 190.9 Thoughtful
O 205 O 196.9 O 170.8 III 130 III 112.4 III 125.1

Gripper II 102 II 88.5 II 95.8
I 93 I 93.0 I 92.8 VI 92 VI 78.9 VI 82.4
II 45 II 28.6 II 44.8 O 91 IV 73.3 O 82.1
O 30 O 16.1 O 27.1 V 89 O 72.6 V 81.0

Matching-bw IV 84 V 70.2 IV 74.5
I/II 210 I 209.0 I 208.7 I 82 I 60.8 I 69.3
I/II 210 II 189.6 II 146.9 VII 61 VII 49.0 VII 50.2
IV 192 IV 123.6 IV 123.4 TPP
III 174 III 115.4 III 108.4 II 169 I 166.5 II 165.7
V 153 V 94.6 V 96.7 I 167 II 125.4 I 158.5
O 93 O 53.2 O 62.4 O 80 O 37.3 O 79.2

Parking
O 30 O 27.0 O 29.3
II 24 II 22.3 II 21.7
I 17 I 15.3 I 17.2

Table 4. Ranking the cumulative results for (O)riginal tasks and reformulated tasks by different sets of outer

entanglements in coverage, and speed and quality IPC score.

6.4. Analysis of the Results

The aim of outer entanglements is to (i) eliminate unpromising instances of planning
operators, which, consequently, reduces the branching factor, and (ii) reduce the size
of task representation, which, consequently, can also reduce the size of the state space.
Given the planner-independent nature of outer entanglements, i.e., they can be encoded
directly in the planning task, any standard planning engine can benefit from them. The
most significant impact on planners’ performance is given by outer entanglements in Bw,
Depots, Gripper, Matching-bw and TPP. In these domains, the I sets of outer entangle-
ments had the strongest pruning power, in particular, they eliminated more than 90%
of actions (see Table 2). Also, the number of atoms was apart of the Gripper domain
reduced by at least 60%. The results (see Tables 3 and 4) demonstrate that the perfor-
mance gain of the planning engines is often considerable. Therefore, outer entanglements
learnt in these domain do efficiently both – eliminating unpromising operators’ instances
and (considerably) reducing the state space.
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Figure 3. Cumulative coverage performance of the considered planners exploiting the original encodings and the

encodings enhanced with the I sets of outer entanglements, across all the testing benchmarks.

By analyzing the impact of outer entanglements in particular domains, we can see
the following. In Bw and its variant Matching-bw, there are two possibilities how blocks
can be temporarily put aside – putting them on the table, or stacking them on other
blocks. Outer entanglements enforce the former option. This drastically reduces the size
of the state space because blocks can be only in their initial or goal positions, on the
table, or being held by the robotic hand. Moreover, temporarily stacking blocks on other
(non-goal) blocks introduces further constraints, i.e., a block on which we temporarily
stack another block cannot be moved without taking that other block out. A possible
drawback is in introducing dead-ends. If a stack of blocks is incorrectly built from “the
middle”, the planner cannot repair it (it is impossible to unstack blocks from other than
initial configurations) and has to backtrack. However, the results clearly indicate that
introducing dead-ends in these domains does not negatively affect planners’ performance.
The Gripper domain describes the problem of moving balls between rooms by robots with
two grippers. Outer entanglements in this domain prevent to pickup a ball in other than
its initial location as well as to drop the ball in other than its goal location. The planners
thus do not have to consider to temporarily leave balls in non-goal locations, which as
the results indicate is beneficial for some planners. Similar observations can be made in
Depots and TPP.

Thoughtful is a variant of the well known freecell card game (Bjarnason et al., 2007).
There are a number of strategies that can be exploited in order to achieve a goal config-
uration of cards. Interestingly, each planner exploited a different strategy while solving
training problems which led to extraction of different sets of outer entanglements most
of which are incomparable to each other (see Table 1). As mentioned before, the sets
VI and VII do not hold for 4 and 6 testing problems respectively. This indicates that
the training problems were too constrained and that some strategies feasible for solving
them might not generalize well for wider range of (testing) problems. On the bright side,
the set III brought a considerable performance improvement among the planners (except
LPG that benefited from the VI set). A closer analysis of the IPC speed scores indicates
that testing problems do not unanimously benefit from a single encoding (i.e., there is a
gap between coverage and the IPC speed score). Also, given the discrepancies between
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learnt sets of entanglements for each planner (in spite of the fact that training problems
were same for all the planners), planners’ “sensitivity” might very vary for particular
sets of outer entanglements. In such cases determining the most promising set of entan-
glements can be done by cross-validating their performances on several tasks which are
more complex than the training ones.

In Barman and Parking, outer entanglements underperformed the original encodings.
Table 3 shows that the results are more mixed, i.e., some planners benefit from outer
entanglements, some do not. In Barman, outer entanglements enforce cocktails to be
poured only into the “goal” shots. Probe considerably benefits from such a restriction,
while it has a very detrimental impact for Mercury. The reason for the latter seems to be
in Mercury’s inefficient handling of situations where the “goal” shot is not clean while
the cocktail is being prepared. Parking, which deals with a problem of rearranging cars
on a parking lot, is a combinatorial domain. The sets of outer entanglements seem to
be beneficial only for some planning techniques and a limited number of testing prob-
lems. Such results point to the fact that despite their reasonable pruning power (around
50% of actions and atoms were pruned in the Barman domain) outer entanglements
can have detrimental effects on some planning techniques (such as Red-Black heuristics
accommodated in the Mercury planner (Domshlak et al., 2015)).

In Gold-miner, Rovers, Satellite, Sokoban and Spanner, outer entanglements slightly
outperformed the original encodings. In these domains, however, outer entanglements
have limited pruning power and hence their impact on planners’ performance is limited.

In spite of a few cases where outer entanglements have rather detrimental effects on
planning engines, the results demonstrated, as summarized in Figure 3, that the use
of outer entanglements improve performance of planning engines regardless planning
techniques they exploit across a number of different domains. Hence, outer entanglements
can be considered a fruitful technique to be exploited both in domain-independent and
planner-independent fashion.

7. Discussion

This section is devoted to discussion of benefits and drawbacks of outer entanglements
and provide general recommendation for their extraction and use.

7.1. Extracting “Good” Sets of Outer Entanglements

The outcome of the outer entanglement learning process depends on training problems
and solution plans of these problems (i.e., training plans). According to a study of Chrpa
et al. (2013) if the number and complexity of training problems, which is determined by
length of solution plans, increase above certain thresholds, the impact on the outcome of
the outer entanglement learning process is negligible. On the other hand, using different
planners to generate training plans might lead to considerably different results.

Our experimental results, where the number of training problems were set to 5 and
whose solution (or training) plans consisted of at least 20 actions in average per domain,
have shown that these thresholds are sufficient for generating sets of outer entangle-
ments that hold also for testing problems and improve planners’ performance. The only
exception has been observed in the Thoughtful domain, where Mercury- and Probe-sets
did not hold for some of the testing problems. Since the Thoughtful domain is complex
(containing more than 20 planning operators), the used thresholds might be too low.
Hence, when setting up the training problems, it is important to consider complexity of
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the domain model and adjust the thresholds accordingly, i.e., the number and complexity
of training problems should be higher for more complex domain models.

For generating training plans, we have used 7 different planners. In 5 domains, the
extracted sets of outer entanglements were identical regardless of the used planner. On
the other hand, in Matching-bw and Thoughtful, the extracted sets of outer entangle-
ments considerably differed (for details, see Tables 1 and 2). Also, the impact of different
sets of outer entanglements on planners’ performance often varied considerably (see Ta-
bles 3 and 4). Except Parking and Thoughtful, we were able to identify a set of outer
entanglements that subsumes the other sets. Since such a set always has the strongest
pruning power, in our experiments the set was denoted as I. With a few notable excep-
tions (e.g. Barman), the I sets outperformed, often considerably, the other sets as well
as the original encodings. In Thoughtful, the Lama-set (set III) was the best performing
set, while in Parking, the Lama-set (set I) was the worst performing set. Interestingly,
in both cases Lama generated the best quality training plans. Moreover, the Lama-set
in Thoughtful does not have the strongest pruning power, it is the Yahsp-set (set I) that
underperformed even the original encoding. It should be, however, noted that training
plans in Thoughtful generated by Yahsp were of a low quality (the worst among the
planners).

Lessons learnt from analyzing the experimental results indicate that i) poor quality
training plans lead to empty or “poor” sets of outer entanglements, ii) the best quality
training plans do not necessarily lead to “good” sets of outer entanglements, iii) sets
containing all extracted outer entanglements tend to be the best performing ones, and
iv) incomparable sets of outer entanglements indicate lack of training data (i.e., a small
number and low complexity of training problems). Notice that the best quality training
plans are not necessarily optimal (unless an optimal planner is used for their extraction).
As poor quality training plans we consider those that are at least 50% longer than the
best quality ones. We believe that taking into account these lessons provides a general
guidance for performing effective and efficient outer entanglement learning process.

7.2. Heuristic Nature of the Learning Method

Because deciding whether an outer entanglement holds in a given planning task is
PSPACE-complete, we have developed an approximation method that learns outer entan-
glements from training plans, solutions of simple planning tasks. Our method, therefore,
follows an assumption that a learnt set of outer entanglements holds for every task in a
given class (or domain). There is, however, no theoretical guarantee that the assumption
will hold for every (non-training) planning task. Although the experiments have demon-
strated a strong support for the assumption, in a few cases we have observed that the
assumption did not hold, and to solve a problem the system would have to revert to its
original formulation. Theoretically, after a reformulated task is proved to be unsolvable,
the original task has to be solved (or proven unsolvable too). Such an approach might
be practically reasonable only in cases in which the unsolvability of the reformulated
task is proved quickly (e.g., goals are not reachable). Another possibility to alleviate
the heuristic issue is to integrate outer entanglement reformulated tasks within planning
portfolios. Also, an engineer who has developed a domain model might manually decide
whether a learnt set of outer entanglements holds for planning tasks using that domain
model. In cases such as BlocksWorld, it might be easy.
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7.3. Optimality

The quality of plans has improved in many cases when outer entanglements were used.
Intuitively, pruning the search space may force planners to find better solution plans. On
the other hand, outer entanglements do not guarantee optimality in general. Strengthen-
ing definitions of outer entanglements to guarantee plans optimality is, of course, theoret-
ically possible. Given the complexity results of “normal” entanglements, we can expect
the same for “optimal” entanglements. Using the approximation algorithm for learning
outer entanglements on optimal training plans with zero flaw ratio might extract some
useful “optimal” outer entanglements. However, we believe that there is a high risk of
extracting “suboptimal” outer entanglements that prune optimal solution plans. For ex-
ample, in Logistic-like domain, it is often an optimal strategy to pick up packages from
their initial locations and deliver them to their goal locations. This can be captured by
outer entanglements. However, if driving between some locations is very expensive, it
might be better to move some packages from other trucks to one truck which will per-
form the “expensive” journey. Here, the outer entanglements will prevent to do so and
thus will prune optimal solutions (although the task will remain solvable).

8. Conclusions and Future Work

In this paper we presented outer entanglements, relations between planning operators and
predicates whose instances are in the initial state or the goal. Outer entanglements are
used to eliminate unpromising instances of planning operators and thus reduce branching
factor in the state space as well as the size of problem representation (and, consequently,
the size of the search space). To deal with the intractability of deciding whether a given
outer entanglement holds for a given planning task (see Section 4.2), we used a learning
method for extracting “domain-specific” sets of outer entanglements from training plans,
solution plans of simple tasks. Outer entanglements can be encoded into domain models
without extending the input language of a planner (see Section 5.2) and, therefore, they
can be understood and exploited as planner-independent knowledge.

The extensive experimental analysis in this paper demonstrates that outer entangle-
ments improve the planning process considerably within a wide range of competition
domains and state of-the-art planning engine combinations. Our experiments using 7
state of the art planning engines, and 14 benchmark domain models, have given a good
indication of the planner and domain independence, and the effectiveness of the method:
in the overwhelming majority of the cases, outer entanglements caused a substantial
improvement in plan generation speed and solution plan quality.

We identified several avenues for future research. Firstly, we plan to incorporate outer
entanglements into well known planning frameworks such as Fast Downward (Helmert,
2006) or LAPKT (Ramirez et al., 2015) so they can be exploited, for instance, for comput-
ing heuristics. Secondly, given the encouraging spread of results among sets of planners
and domains, we intend to work towards including an entanglements generating facility
as part of a knowledge engineering workbench. Finally, we plan to extend the concept
of outer entanglements for non-classical planning which will potentially improve perfor-
mance of real-world planning applications (preliminary work has been started on this in
numerical planning (Chrpa et al., 2015a)).
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